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REPORTS AND ARTICLES 

THE SPACE SHUTTLE 
PRIMARY COMPUTER SYSTEM 

IBM's Federal Systems Division is responsible for supplying "error-free" 
software for NASA's Space Shuttle Program. Case Studies Editors David 
Gifford and Alfred Spector interview the people responsible for designing, 
building, and maintaining the Shuttle's Primary Avionics and Software 
System. 

ALFRED SPECTOR and DAVID GIFFORD 

PROJECT OVERVIEW 

AS. What is the extent of IBM's involvement with 
the Space Shuttle Program? 
Macina .  IBM is involved in a number  of different proj- 
ects. The one that our group is involved with is devel- 
opment of the Pr imary Avionics Software System 
(PASS). The PASS is the highly fault-tolerant,  on-board 
software that controls most aspects of Shuttle operation. 
IBM also has a contract to develop software and supply 
commercial  hardware for the Mission Control Center in 
Houston. Other major activities include an integration 
and development  contract for the Launch Processing 
System at the Kennedy Space Center in Florida, and a 
contract to supply the on-board computer  hardware 
from Owego, New York. 

AS.  What can you tell us about the historical back- 
ground of IBM's involvement with the PASS? 
Macina .  We won the initial software contract in 1974. 
Our first objective was to develop software for the 
Shuttle ALT (Approach and Landing Tests), which took 
place in 1975 and 1976. There were approximately  10 
such flights, some where the Shuttle remained at tached 
to its Boeing 747 carrier, and others where the vehicle 
was released at 20,000 feet and glided to a landing. Our 
initial effort involved the development  of the operating 
system and a small part of the entry applications soft- 
ware. The operating system was probably the most dif- 
ficult development  task we had to tackle, since it in- 
volved our first at tempt to form a synchronized set of 
redundant  computers. 

We also had the contract for the Software Develop- 
ment Lab (SDL). The SDL was both a six-degree-free- 
dom flight simulator and a program management  facil- 
ity for performing builds, compiles, integration, and 
configuration management.  (Eventually, the SDL 
evolved into the Software Production Facili ty (SPF).) 

It was during this early phase that we defined our 
basic organizational structure: a development  organiza- 
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tion and a separate verification and validation (IVV) 
group controlled by different senior managers. At the 
time this was a somewhat  unique idea in that the veri- 
fication group was almost as large as the development  
group and did not begin producing a product for several 
months after its formation. They learned from and par- 
t icipated with the development  people. Our key con- 
cept for the verification organization was that they 
should proceed with an assumption that the system 
was totally untested. 

There was a transit ion period between 1976 and 1981 
during which some of our people cont inued work on 
the ALT program, while others began work on the STS- 
1 software. 1 The Shuttle was evolving rapidly, and the 
requirements we received were constantly changing. 
Fortunately,  the ALT program gave us a chance to 
learn how to deal with this constantly evolving system. 

From a development  and test standpoint,  we came 
very early to the conclusion that as much time as possi- 
ble should be spent designing and coding the system 
carefully, since it's more cost effective to prevent  prob- 
lems than to correct them. When you ' re  pressed by 
schedules, you tend to develop software as fast as possi- 
ble and to fix the problems later. This is always expen- 

' STS-1 denotes the first Shuttle flight {for Space Transportation System No. 1}. 
Subsequent  flights cont inue this sequence (STS-2, STS-3, etc.). 
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sive. The constant updating of the requirements early 
in the program contributed to our schedule problems. 
We would build software and then rush to incorporate 
late changes knowing all along that we would have to 
"test-out" any problems later in the process. 

The next major change in the organization came 
after the STS-1 mission. We had expended all of our 
effort on the first flight and had to make certain adjust- 
ments to support multiple flights. We reduced our test- 
ing, increased our development activity, and began to 
automate. We built standardized test case libraries and 
improved our software production facility to make it 
more automated and more available to developers and 
verifiers. 

AS. Before we get to the on-board system, could you 
discuss some of the other computer systems involved 
in the Shuttle mission? 
Macina. The launch processing system located at the 
Kennedy Space Center provides the interface between 
the launch team and the on-board system. It uses an 
array of approximately 40 minicomputers, each having 
two color terminals to monitor and control major Shut- 
tle subsystems. For example, one computer monitors 
the Shuttle main engine system while another inter- 
faces with an on-board piece of hardware called the 
pulse code modulation master unit (PCMMU) that 
sends data to the ground. Many of the minicomputers 
receive their data from the on-board computer system. 
Two bidirectional channels called launch data buses 
(LDBs) tie the on-board computer system to the launch 
processing system. 

AS. What does the software at the Mission Control 
Center in Houston do? 
Macina. The software at the MCC performs a number 
of functions: It receives and processes telemetry from 
the vehicle through worldwide ground stations; it per- 
forms trajectory predictions, abort predictions, and 
other functions of that type; it provides the link from 
the ground controllers up to the vehicle, called uplink, 
which lets ground controllers perform most of the func- 
tions available to the crew via the 50-60 displays they 
have access to on board; and it controls the worldwide 
tracking network. 

During a mission the MCC uses two large mainframe 
computers to maintain reliability. One is on-line--it 
processes data and interfaces with the tracking net- 
work, the flight controllers, and the vehicle in real 
time. The second is a dynamic standby computer, 
which can be brought on-line rapidly if the primary 
computer encounters problems. 

DG. Let's discuss the on-board system. 
Macina. The on-board system (called the DPS, for 
Data Processing System) utilizes five computers, which 
are known as GPCs (General-Purpose Computers). The 
PASS resides in a maximum of four of these at any one 
time. Since the software needed to support an entire 

TONY MACINA 
A.J. (Tony) Macina became the manager of flight operations 
for IBM's On-board Space Shuttle Program in July 1983. His 
responsibilities include the preparation, integration, system 
test, and field maintenance of on-board software systems. 
Macina joined IBM in 1974, became manager of the Shuttle 
System Software Test Department in 1976, and manager of 
the Applications Performance Test Department in 1977. He 
has also held positions as technical staff to the manager of 
Shuttle software verification and to the manager of on-board 
space systems. Before coming to IBM, he was an aircraft 
design engineer for Lockheed Aircraft and a task manager for 
Apollo and Space Shuttle separation systems for TRW. 

mission would be too large to occupy the primary 
memory, it has been divided into eight overlays that 
make up the operational programs of PASS. The over- 
lays are obtained from one of two mass storage devices 
(MMUs) and are only performed when the vehicle is in 
a quiescent flight phase, that is, prelaunch or on-orbit. 

Flight-critical programs like those used for ascent and 
entry execute in a redundant set: Four computers si- 
multaneously execute identical code and synchronize 
their I /O activities. The fifth computer is reserved for 
the backup flight system, or BFS, which was independ- 
ently programmed by Rockwell. The BFS can perform 
critical flight functions if a catastrophic failure disables 
the PASS. The BFS can only be engaged by crew action. 

Remember that the Shuttle cannot operate without 
the DPS. Most of the subsystems do not have manual 
backups. This is why NASA has tried to achieve fail- 
operational/fail-safe reliability: After a single failure, 
the Shuttle remains fully operational, and the mission 
continues; after a second similar failure, it can still re- 
turn safely. 

Let me describe the general interfaces that connect 
the on-board system to the rest of the Shuttle. Most 
crew commands go through the on-board system. It's a 
fly-by-wire vehicle. All sensors, effectors, and crew 
controls are connected to the on-board computers 
through multiplexors that are linked directly to the 
computers via a 1-MHz data bus network. When an 
astronaut throws a switch, that input is actually read 
by the computer via a multiplexor. An example is the 
rotational hand controller used by the crew to fly the 
vehicle. These are transducers whose deflections are 
measured by a multiplexor, which in turn provides the 

September 1984 Volume 27 Number 9 Communications of the ACM 8?5 



Reports and Articles 

data to the computers for action. In addition to the 
cockpit switches and controls, there are 55-60 different 
display formats that provide the interface between the 
DPS and the hundreds of subsystems on board. They 
range from graphics and trajectory displays to pure 
monitoring displays. 

AS. How is the PASS coded and organized? 
Clemens. The software has an operating system writ- 
ten in assembler and applications written in HAL/S, a 
high-order language developed by Intermetrics, Inc., of 
Cambridge, Massachusetts. There are a number of sto- 
ries about how the language was named--one is that 
it's from the computer in the movie 2001, although that 
is probably apocryphal. HAL/S is a real-time, struc- 
tured engineering language that is very readable. Theo- 
retically, at least, it should limit the amount of struc- 
ture-induced errors because it makes the programmer 
pay attention to structure as the software is being de- 
veloped. It's somewhat similar to PL/1. 

Macina. The operating system uses about 35K of the 
106K 32-bit words available, and includes a priority- 
driven process management scheme and the on-board 
display system software. Our process management 
scheme lets important processes run at the expense of 
lower priority processes if necessary. It is essentially a 
self-correcting system that off-loads low-priority proc- 
essing when CPU demand is high. 

DG. What function does the PASS perform? 
Macina. You can divide the applications into three 

sets. The first set contains guidance, navigation, and 
flight control. In this set there are separate groups of 
algorithms for ascent, on-orbit operations, and entry. 
Another set contains systems management--it 's  used 
during the on-orbit phase, primarily for opening and 
closing the payload doors, controlling the manipulator 
arm, and payload monitoring and control. The third set 
is used for vehicle checkout both prelaunch and while 
the vehicle is on-orbit. 

AS. How would you define guidance, navigation, and 
flight control? 
Macina. During all flight phases, all commands that 
are issued to the vehicle control systems on the 
boosters, Shuttle main engines, and aerodynamic sur- 
faces originate in the DPS. The control laws, gains, fil- 
ters, and so on, are imbedded in the flight software. 
These functions constitute the flight control software. 

The guidance software issues the commands to the 
flight control software. Guidance obtains the current 
state (position, attitude, and velocity) from the naviga- 
tion software. Guidance, knowing where the vehicle is 
from navigation as well as the desired state of the vehi- 
cle, determines what commands should be issued to get 
the vehicle to the desired state. All three pieces work 
hand in hand. These systems can be operated in a fully 
automatic mode, and during typical ascents, they ac- 
tually do take the vehicle all the way to orbit without 
crew intervention. 

In addition, there are various aids that provide data 
to the navigation system. The inertial measurement 
units (IMUs) assist the navigation software in maintain- 

FIGURE 1. The Control Room at Mission Control in Houston. 
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ing vehicle position and attitude by measuring and in- 
tegrating accelerations. They aren't perfect, however-- 
for an entry where it's important to hit a point on the 
ground 300 feet wide and maybe several hundred feet 
long, additional navigational aids are necessary. The 
navigation software makes use of a standard tactical air 
navigation system, which provides range and bearing 
information from stations on the ground as well as a 
Microwave Scan Beam Landing System for glide slope 
and landing control. 

AS. Could the computers fly an entire miss ion--an 
unmanned mission? 
Macina.  No, not the way the software is designed to- 
day. There are still a number of critical functions that 
require the crew. In a system as complex as the Shuttle, 
the human component provides a lot of flexibility for 
problem solving. For example, once during a flight test 
the radar altimeter locked on the nose gear at 2500 feet. 
The radar altimeter would be critical in an automatic 
flight, and this is the kind of problem that we'd want to 
eliminate before we would consider trying one. 

DC. Is the DPS involved with the Shuttle's payloads? 
Macina.  Yes and no, depending on the payload. The 
deployments of the SBS (Satellite Business Systems) and 
ANIK (Canadian) geo-synchronous satellites on STS-5 
were totally directed by the PASS software. The check- 
out, spin-up, and deployment are all controlled by the 
software via crew displays. The TDRS-IUS (NASA Com- 
munication Satellite) combination, on the other hand, 
was not. We performed only a monitoring function for 
that system. 

AS. From a global point of view, how do the on- 
board and ground systems fit together? 
Macina.  About 72 hours prior to launch, an on-board 
computer is brought up, and the controllers begin 
checking out various on-board systems. About 15 hours 
prior to launch, the on-board system actually begins to 
run in the redundant set (four computers). The software 
allows controllers to begin checking out the systems 
that are going to be critical to launch guidance, naviga- 
tion, and flight control. During this period the control- 
lers also align the IMUs. At T-20 minutes, the ascent 
program is loaded from the mass storage devices into 
the redundant computer set. This program provides the 
functions that allow the Shuttle to achieve a stable or- 
bit. 

At this point the ground launch processing system 
(LPS) still has control and is configuring, checking, top- 
ping off fuel tanks, etc. The on-board launch sequencer 
is both passively monitoring the systems and fielding 
requests from the LPS to supply data. The interface 
becomes more dynamic as lift-off approaches. The two 
systems are no longer communicating through human 
controllers. The launch sequencer on the ground is 
talking directly to the on-board launch sequencer. 

At about T-25 seconds a "go-for-auto-sequence-start" 
command is sent to the on-board system from the 
ground system. At that point, the ground system be- 
comes passive and the on-board system takes over. The 
vehicle is still connected to the ground by umbilicals, 
but the LPS is now in a monitoring role. The on-board 
redundant set launch sequencer then takes the count 
from T-25 seconds through engine ignition, ascent, and 
into orbit, all of which takes about an hour. 

AS. When does the vehicle start communicating with 
Houston? 
Macina.  Prior to lift-off the vehicle transmits data to 
the ground via two paths: an RF link called the down- 
link and the LDBs. Houston is in communication with 
the vehicle throughout the countdown but only in a 
monitoring role via the downlink path. As the vehicle 
leaves the launch pad, control of the flight is passed 
from the Launch Control Center at the Kennedy Space 
Center to the MCC in Houston. 

About half of the data that are telemetered to the 
ground via the downlink originate from the on-board 
computers. On the basis of the requirements that are 
given to us prior to every flight, we precisely tailor the 
information that will be required to support the mis- 
sion. Most of the changes are associated with the pay- 
loads. The guidance, navigation, and flight control pa- 
rameters remain relatively stable from mission to mis- 
sion. The uplink function is the exact reversal of the 
downlink. It relays commands from the ground control- 
lers in the MCC to the on-board computers, thereby 
giving the ground access to many of the same displays 
and controls available to the crew. 

DG. How do you make the system reliable? 
Macina.  During flight-critical phases like ascent and 
entry and during preflight fuel loading--periods where 
loss of the system might mean loss of the vehicle--the 
PASS executes in a redundant set of computers. In this 
set, the software is synchronized at the applications 
level. We are actually providing bit-for-bit identical 
data to each computer, and each computer is issuing 
bit-for-bit identical data commands to the various sub- 
systems. We run our programs in these flight-critical 
phases in four of the computers, which are synchro- 
nized to within 150 microseconds of each other. 

As I mentioned, there is a fifth computer that runs 
the Backup Flight System (BFS). Early on, NASA was 
concerned about the possibility of a generic software 
problem in the PASS. What if there were a "bug" in the 
PASS that brought the entire primary system down? 
The way they alleviated their fears was by developing 
independent ascent and entry software from a subset of 
the requirements they had given us. This independent 
software was written by Rockwell International and re- 
sides in the fifth computer. 

During ascent and entry, the BFS is essentially in a 
listening mode: It monitors the PASS data buses as they 
collect data from the inertial measurement units, rate 
gyros, etc. Essentially, it's flying the vehicle, except 
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that all of its commands are disregarded. By depressing 
a single switch, the crew can disable the pr imary sys- 
tem and engage the backup. 

The decision to engage the BFS is totally a crew func- 
tion. Their procedures identify certain situations for 
which the switch should be made: for instance, loss of 
control, mult iple consecutive failures of PASS com- 
puters, or the infamous two-on-two split where  the 
computers split up into two pairs (we've never seen this 
occur). To date the crew has never had to use the BFS 
during a mission. 

Once the vehicle is in orbit, one or two PASS com- 
puters run GNC programs; another  executes the system 
management  program, which runs the remote manipu-  
lator and interfaces with the payloads; and a third is 
loaded with an entry program and then turned off as a 
precaution. It provides the capabil i ty of flying back in 
the event all the other computers fail. The backup 
flight system in the fifth computer,  which also contains 
entry software, is turned off as well. In this configura- 
tion there are two computers loaded with software that 
will allow a re turn to Earth. 

AS. If these two computers and the mass memory 
units failed, could you uplink programs to the com- 
puters? 
Macina.  Yes, but  only entry programs. That would be 
a third way to return. It's a very long, tedious process, 
since the data rates are low, and the vehicle is in and 
out of communicat ion with ground stations. The proce- 
dure involves uplinking the programs and then down- 
l inking the contents of the computer  and verifying that 
the transmission was received correctly. 

THE SHUTTLE COMPUTERS 

AS. Can you give us some more detailed information 
about the Shuttle computers? 
Macina.  A single computer  (GPC) is made up of two 
packages: a CPU unit and an I / O  device unit  (IOP), 
with a total of 106K 32-bit words of memory.  The CPU, 
a Sys tem/4  Pi, Model AP-101 manufactured by IBM, is 
an off-the-shelf processor and has probably been 
around for 10 or 12 years. Our original contract  speci- 
fied that we use off-the-shelf hardware  as much as pos- 
sible. The 4 Pi design has been used in a number  of 
other aerospace vehicles. For example,  certain B-52 air- 
craft and the B-1 Bomber use the 4 Pi technology. 

The IOP was specially built  and designed for the 
Shuttle, using 4 Pi technology. It contains 24 "time- 
sliced" processors that handle the data buses on the 
Shuttle. The IOP obtains its instructions from main 
memory and is actually in contention with the CPU for 
memory access. 

AS. How much do the GPCs weigh? 
Macina.  About 120 pounds each, for the combined 
CPU and IOP boxes. 

AS. How do the components fit together? 

Macina.  An IOP and a CPU are interconnected by a 
parallel  data channel  and essentially perform as a sin- 
gle unit. Each pair of units interfaces with on-board 
systems through 19 or 20 prime interface devices 
known as MDMs, for mul t ip lexor /demul t ip lexors .  
MDMs retrieve data from the various sensor devices, 
convert it to a Manchester  code, and place it on a DPS 
data bus upon a request from the computers.  MDMs 
make the system very flexible in that  sensor devices 
can be added with only minor  changes to the MDMs 
and the PASS software. 

DG. Can you describe the 4 Pi AP-101 in more de- 
tail? 
Macina.  The AP-101 is a 450,000-operations-per- 
second machine,  which isn't ex t remely  fast by today's  
standards. The eight programs used during a typical 
mission average about 75 percent  CPU uti l ization for 
most flight regimes, which leaves us well  wi th in  the 
capabili ty of this machine.  Very early on in the devel- 
opment phase, we did have some trouble with exces- 
sive CPU utilization. We went  through a very detai led 
scrub of the software requirements  and the code to 
achieve the CPU util ization we have today. 

AS. When you mention 450,000 operations per sec- 
ond, I get the impression that you do a lot of floating- 
point operations. 
Macina.  You would expect that to be true for a soft- 
ware system so heavi ly geared toward scientific appli- 
cations like guidance and navigation. However,  the 
reali ty is that only a small part of the operations are 
floating point. Most of the instructions generated by the 
compilers and assemblers tend to be loads, stores, 
branches, e t c . - - the  data handl ing and bookkeeping in- 
structions. 

AS. Is the memory core? 
Macina.  Yes, it 's ferrite core. By today's s tandards it 
seems outdated, but it does have certain advantages; for 
instance, it 's inherent ly  nonvolati le when power is re- 
moved. 

AS. Can you give us an idea of the failure rate of the 
GPCs? 
Macina.  The computers that flew the first five Shuttle 
flights had a mean t ime between failure of approxi- 
mately 6000 hours for the entire set. 

DG. Tell us about the I /O devices that connect to the 
Shuttle computers. 
Macina.  There are four CRTs and three keyboards. 
Three of the CRTs reside forward in the cockpit of the 
Shuttle, with two keyboards just below them. There 's  
one CRT and one keyboard in the aft cockpit area for 
payload operations. For each CRT display, there 's  a sep- 
arate display processor called a display electronics unit  
(DEU). The GPCs generate dynamic  data and the DEUs 
generate and format the background data for the CRTs. 
The crew has access to 55 or 60 different display for- 
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FIGURE 2. The on-board primary computer system. A central processing unit and an input/output processor make up a general purpose 
computer (upper left). There are five sets of these two boxes on board, all stored below the cockpit. The display system consists of display 
electronics units, display tubes, and keyboards (right). There are four DFUs (three forward in the cockpit, one aft), four display tubes (three 
forward, one aft), and three keyboards (two forward, one aft). There are two mass memory units on board (lower left). They are stored with 
the GPCs below the cockpit. 

mats via the four display units. The units are inter- 
changeable and can access any or all of the available 
formats. 

There are two mass storage devices. Each contains a 
600-foot continuous tape on which there are three 
areas. Each area has a complete copy of all eight opera- 
tional programs. This means there are six copies of all 
the programs needed to fly the Shuttle on board. 

The mass storage devices contain more than just the 
PASS software. They store software for the backup 
flight computer and the DEUs. They also hold software 
for the computers that monitor  the health of the main 
engine. (One is mounted on each main eng ine - - they  
communicate through an interface unit  to the PASS 
GPCs.) The software and data in the mass storage de- 
vices are addressed in 512-word blocks, which provide 
a capacity of about eight mill ion 16-bit words. 

DG. Is the mass storage ever written during flight? 
Macina .  One of the eight PASS programs is a mass 
memory write capability. Though we have never 
needed to use it during a flight, this program is used 
during tests to modify the software to fit the needs of 
the various test facilities. 

By the way, we also have a general main memory 
write capability available to the crew and to ground 
controllers. One of the PASS displays allows them to 
write hexadecimal  numbers  directly into a GPC's main 

memory. There are certain failure circumstances where 
this capabili ty might be useful, but these are very rare 
situations. At first we were reluctant  to incorporate 
such a capability, but NASA wanted the flexibility. 
They were worried that a potential  generic software 
problem might go undetected until  the vehicle was in 
orbit. Our first reaction was to want  a sign that would 
come up and say "your warranty  is void" when they 
used the capability. 

AS. Have you used this capability yet? 
Macina .  As with the mass storage write  capability, 
this capabili ty is used mostly during testing. We have 
on some minor occasions used it during a mission. On 
one flight an overflow occurred in a counter  that was 
keeping track of the number  of Reaction Control Jet 
firings. NASA asked if they could have a general mem- 
ory write procedure for zeroing that counter. Nothing 
very critical. 

DG. Where is all  of this equipment located? 
Macina .  All of the avionics hardware,  including the 
computer system, is located in an equipment  bay below 
the flight station in racks. The crew has complete ac- 
cess to the area. On the first flight, there was a lot of 
uncertainty about the new vehicle and the new com- 
puter  system. NASA opted to take an extra preloaded 
computer  along. They called it an "entry-in-a-suitcase." 
The thinking was that, if the entire system were to fail, 
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the crew could install this computer, attach the cooling 
units and pin connectors, and use it to fly the vehicle. 
They brought it along for two or three flights until they 
became confident enough to let the weight constraints 
convince them it was unnecessary. 

JACK CLEMONS 
J.F. (Jack) Clemens is manager of avionics flight software 
development and verification for the Shuttle on-board com- 
puters. He has also worked on the Apollo and Spacelab 
programs. Clemens joined IBM in 1974 and became manager 
of the Shuttle software independent verification organization 
in 1979 before taking over both the software development 
and verification organizations in 1982. Before coming to 
IBM, he worked for GE Valley Forge from 1967 to 1968 and 
TRW Systems in Houston from 1968 to 1974. 

conditions on launch day or different lift-off weights 
can be loaded as initial constants into the code. This is 
important when there are postponements or last-min- 
ute payload changes that invalidate the original inputs. 

AS. How do the payloads affect your software? 
Clemons. We anticipated from the beginning that we 
were going to have a lot of different payloads and pay- 
load interfaces, so we built modular software to inter- 
face to the payloads. We can plug in a large number of 
constants to restructure the way the software works in 
terms of its I /O, its interfaces, the monitoring and an- 
nunciation of payload conditions, the commands it 
sends and receives, and the displays it generates. All of 
these changes, relating both to launch conditions and to 
payloads, are known as reconfiguration changes. They 
are implemented with simple data changes, rather than 
with code and logic redesign. 

We have also devised a tool that we call the systems 
management preprocessor. Systems management (SM) 
is our generic term for the software that does both 
Shuttle vehicle and payload monitoring and control. 
The SM preprocessor takes data relating to the orbital 
payload reconfiguration that we get from NASA, con- 
verts data formats where necessary, and places those 
data in the right places in the on-board software 
memory. SM is a fairly hefty piece of software: about 
20,000-30,000 lines of code. 

PROJECT ORGANIZATION 

AS. How many people from IBM FSD have been in- 
volved in the Shuttle? 
Clemens. Right now there are about 100 people devel- 
oping code for the on-board system and about 80 work- 
ing on IVV. These numbers exclude support activities 
like developing the software development and test bed 
and providing support to the various fields sites, which 
require about another hundred people. 

There are two types of verification that we do on this 
project. One consists of verifying that our code meets 
the NASA-specified requirements, that is, that we meet 
the "letter of the law." Beyond that, however, we check 
our software in simulations of real flight si tuations--in 
what we call flight performance verification. We find 
out if the software can actually fly the vehicle and 
whether we can achieve orbit for different weights or 
under different kinds of hardware failures. We fly a 
series of "stress" cases and have our engineers look at 
the software response. Performance verification evalu- 
ates both the software requirements and the software 
design itself. 

DG. Have you tried to structure the software so that 
it can be changed easily? 
Clemens. By changing certain data constants, we can 
change relatively large portions of the software on a 
mission-to-mission basis. For example, we've designed 
the software so that characteristics like atmospheric 

AS. How do you verify the code produced that way? 
Clemens. We use a simulator to call up the reconfl- 
gured displays, simulate the payload activities, and fly 
portions of the mission. This can give us an idea if SM 
is working properly. This involves a considerable 
amount of testing--it  becomes really the pacing item or 
limiting factor for this kind of reconfiguration. An auto- 
mating device like the SM preprocessor is no better 
than a particular programmer's conception of what  it 
can and should do. 

We are now building still another tool that will help 
with the SM verification process. It will automatically 
"decompiie" the memory images generated by this SM 
preprocessor and compare the results with the original 
inputs--i t 's  sort of an "inverse preprocessor." It will be 
developed and programmed by a group that's independ- 
ent from the one that built the original preprocessor. 
Differences will arise if either tool is in error or if 
there's some misinterpretation in input data. In any 
event this tool will flag every difference between the 
requirements that were loaded and what the code does. 
Once we satisfy ourselves that we haven' t  designed the 
same fault into both the SM preprocessor and the SM 
decompiler, we'll be able to supplement or replace a lot 
of the testing we do now and condense our test case 
analysis to a smaller set. 

Even with these tools, however, the number  of 
changes is growing as users become more numerous 
and flights more frequent. We're more or less going out 
of the business of verifying code and into the business 
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of verifying that new sets of constants will perform 
properly with our software. Our manpower  require- 
ments would be coming clown because of all the sophis- 
ticated and efficient testing tools we've implemented,  
except that the quanti ty of missions we are now sup- 
porting and all the verification we have to do for these 
reconfiguration changes are keeping them up. 

AS. Are you responsible for checking the input data 
when a mission is postponed to ensure that everything 
wil l  go as planned at a later date? 
Clemens. Yes, although in that part icular  case, there 
would only be certain classes of changes that we could 
accept and still be able to support the flight. NASA 
doesn't  come to us two days before a mission to swap 
out one payload for another with totally different soft- 
ware needs. 

AS. Do you have to do a mass  memory  reload of the 
system if weather causes a postponement? 
Clemens. For the types of changes that we 've been 
talking about, there 's  no need to recompile code for 
weather  changes. We would just patch very specific 
data values on the mass memory devices. It's a little 
different when the Shuttle software code itself has to be 
changed. That could involve changing and recompiling 
some very specific pieces of code. 

AS. What's your cycle for major software changes? 
Macina.  Software changes fall into two major cate- 
gories: flight reconfigurations, which entail data 
changes to support specific missions, and capabilit ies 
changes, which entail  the development  of new code. 
We get an initial set of payload and init ialization data 
six months before a typical flight. These data are based 
on predictions of the flight profile for the projected 
launch day and the payload. We deliver initial software 
about 20 weeks before the flight. About 10 weeks be- 
fore the flight, NASA updates about 10 percent of the 
data based on refined information about the payload, 
the launch date, etc. If we were reconfiguring for only 
one mission at a time, this 20-week process would be 
much shorter, but with overlapping flights and man- 
power constraints, the 20-week period is realistic. 

AS. That would mean handling s ix  flights at a time, 
working from the flight-a-month projection. 
Macina: By 1985 we may have as many as 10 going 
simultaneously. 

AS. How much data are you talking about for these 
reconfiguration changes? 
Clemons. We have access to about 8,000 to 10,000 pa- 
rameters. Typically we change anywhere  from 800 to 
1,000 different 16-bit words for a given flight. In addi- 
tion we reconfigure the SM and payload control soft- 
ware on each flight. This involves the regeneration of 
common data areas, which in turn facilitates the gener- 
ation of new payload control displays and I / O  within 
the software. 

AS. It doesn't sound as if there are many modules  in 
your system that remain the same from one miss ion to 
another. 
Clemens. There are not a lot of modules for which 
code changes from one mission to the next. However, 
over the first dozen Space Shuttle flights, we' l l  probably 
change more than half the modules in response to 
NASA-requested capabili ty enhancements .  

Macina.  The system was designed to allow us to be 
able to support a wide variety of missions without  
changing code. As a very simple example, consider that 
the flight control algorithms used during ascent are nth- 
order polynominals,  the coefficients of which are 
changeable initialization values. We can satisfy our- 
selves that those polynominals meet the intended re- 
quirements by substituting a variety of values during 
testing. The result is a piece of operating code that we 
believe is correct and meets the requirements  as in- 
tended. We can then change those coefficients on a 
flight-to-flight basis with very little need for additional 
testing. 

If we were really confident in the process as a whole, 
we wouldn ' t  perform any testing after reconfigurations. 
We test because we want  to be absolutely sure that the 
combination of all these changes really can fly the ve- 
hicle, either from a requirements  or an implementat ion 
point of view. Consequently on every flight we run a 
set of so-called performance verification cases where 
we simulate all mission phases: ascent, abort, entry, etc. 
We aren ' t  the final verifiers of the avionics system 
either: NASA actually takes our software and does ad- 
ditional testing in the SAIL, in the SMS, and on the 
vehicle prior to each flight. 

DG. Does the crew ever make  any suggestions? 
Clemens. Since this is an R & D project, the crew lets 
us know when they ' re  not satisfied with the perform- 
ance. We've been getting a steady stream of require- 
ments changes that originate from the flight crews, and 
we expect this to be an ongoing process. 

Macina.  Most of these changes are enhancements  to 
existing capabilities. In general they ' re  meant  to make 
the interfaces more user friendly, or to make it easier 
for a crewman to train or to operate the vehicle more 
safely. 

AS. What other kinds of changes do you see? 
Macina.  There are very few major new capabilities. 
There is one new capabili ty that will be introduced on 
STS-9 to provide more navigation code to permit  a ren- 
dezvous capability. 2 This will be used for the first t ime 
on STS-11 to allow a rendezvous with the Solar Maxi- 
mum Satellite in an at tempt to repair it. 

Clemens. The bulk of the code change requirements  

ZThis capacity was actually used on flight 41C in early 1984 to rendezvous 
with the malfunctioning Solar Max satellite. 
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we get now relate to on-orbit enhancements for making 
the vehicle more flexible and operational for orbital 
use. The first five Shuttle flights had very few payload 
capabilities other than for launching and monitoring. 
We've had to develop further software modifications for 
deploying a payload with a remote manipulator system, 
maneuvering away from it, and retrieving it again to 
bring it back into the cargo bay. 

Capabilities of this kind require significant precision 
in the guidance and navigational systems. We have to 
design code that can provide that kind of precision. 
Consider that the Shuttle is now heavily dependent on 
worldwide ground-based communication, monitoring, 
and control. Because of drift in the IMUs, the on-board 
navigation system is not precise enough to make an 
accurate entry and landing after five days in space 
without ground assistance. The risk would be unac- 
ceptable. We have to uplink a new state vector before 
the crew takes the craft out of orbit. There's an effort 
being made to upgrade the DPS system and the soft- 
ware to allow for more vehicle autonomy. We expect to 
see quite a few code changes as a result. 

Once the Air Force starts launching out of Vanden- 
berg Air Force Base, there will be another set of 
changes to make. The Air Force's requirements are 
somewhat different from NASA's. 

AS. I get the impress ion that you have countless  ver- 
sions of s imilar software.  It must  be a headache to 
keep track of them. 
Macina.  It's the ultimate configuration management 
problem. Let me give you an idea of what we're looking 
at right now (as of May 1983): We're beginning to de- 
velop more on-orbit autonomy capabilities. We're fin- 
ishing up STS-7, doing the 10 percent update. We're 
starting to reconfigure the software for the new pay- 
loads on STS-8. We've begun the six-month reconfigur- 
ation on STS-9 (Spacelab), and we're also reconfiguring 
the sixth-month set of software for STS-10 (Department 
of Defense). Altogether, we've got five activities going 
right now, all during what we consider a low-flight- 
frequency phase. 

DG. Are the same people involved on all the activi- 
ties? 
Macina.  Yes--the development, verification, and re- 
configuration people work on many different things si- 
multaneously. 

Clemons. The independent verification group is veri- 
fying the final load for STS-7, doing the sixth-month 
update for STS-8, doing the new rendezvous capability 
for STS-9, and supporting the Department of Defense 
testing on STS-10. 

We've had to use a rigorous configuration manage- 
ment control process. We're building a lot of tools that 
should ensure that a programmer can sit down at a 
terminal to make an update and can use panels that 
will ask which system is to be worked on and tell that 
programmer which kinds of entries would accidentally 

update the wrong version. (These would therefore be 
illegal.) As a management team, we've tried to keep the 
burden of configuration control off the individual 
worker as much as possible. We aren't asking program- 
mers and test people to keep track of the configuration 
on a day-by-day basis. 

DG. How often do you get new environment  and 
vehicle hardware models  from NASA or other con- 
tractors? 
Macina.  There's a set of model data that has to change 
every time we reconfigure software. We receive a new 
set of simulator initialization constants once per flight. 
Whenever new or updated hardware is added to the 
vehicle, there is a potential need for new simulator 
models. 

AS. Can you tell us more about the specifications 
that you get from NASA and Rockwel l?  
Macina.  There are three levels: Level A specifications 
consist of a general description of the operating system 
and the overall system architecture. These specifica- 
tions were provided very early on (in 1975) and have 
remained relatively stable. Overall, the Level A specifi- 
cations were a very good narrative description of the 
system: They presented the idea of the four computers 
in a redundant set, along with the I /O techniques we 
have used throughout the project, etc. They also speci- 
fied the requirements for reliability, CPU utilization, 
transport lags for the flight control system, skews be- 
tween machines, etc. 

For the applications, we were given Level B specifica- 
tions that provided a general description of all software 
functions and defined the rates at which each task is 
supposed to run. From the Level B specifications, we 
developed a functional design specification, which was 
reviewed with NASA. 

The Level C requirements are the most detailed. 
They actually tell us how to code many areas. For ex- 
ample, they provide specific navigation and flight con- 
trol algorithms, although specifications in other areas 
are somewhat more general. The Level C specs fill 
about 20 individual volumes, each addressing a differ- 
ent function (guidance, navigation, flight control, vehi- 
cle utility, SM, etc.). Overall, the Level C requirements 
are the base against which we test. 

AS. Are they most ly  in English? 
Macina.  Yes. The true requirements tend to be in 
prose, although in some cases (like navigation) the 
prose is supplemented with equations and flow dia- 
grams. 

AS. What kinds of tests do you run? 
Clemons. For STS-1, when virtually all the code was 
new, we built a set of test cases that explicitly verified 
all the requirements just as we received them. The 
independent verification group is expected to deliver 
error-free code, which is a goal we are asymptotically 
approaching. "Error-free" means 100 percent conform- 
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FIGURE 3. Deployment of a Satellite 

ity to requirements,  which is a massive verification job. 
For STS-1 we had about 50 people just testing guidance, 
navigation, and control (which excludes payload opera- 
tions and the operating system). Those people worked 
about two years and built  about 1000 test cases. 

AS. Could I point to any requirement on any page in 
those bookshelves and ask you to say how you deter- 
mined that your code met the requirement? 
Clemons.  Yes, and I could show you (1) a test specifi- 
cation that tells you generically how am I going to test 
the requirement;  (2) maybe four or five test procedures 
writ ten up and reviewed in advance, detailing how that 
part icular  requirement  is to be tested; (3) a set of test 
cases; and (4) a set of test case reports. 

DG. Do these procedures hold for later flights? 
Clemons.  Basically, yes. However, we can' t  run the 
entire STS-1 se t - - the re  are just too many flights and 
not enough people. Instead, we use what  we call a 
"delta" verification approach. We take all of the 
changes that have been made to the system since we 
last verified it and explicit ly verify each one. 

First we assign every module to a specific verification 
analyst so that there 's  somebody to vouch for each 
module. We run a source compare program to define 
the changes (e.g., to compare STS-2 code with STS-1 
code). The analyst accounts for each change in terms of 

an authorized change request, a discrepancy report, or 
some other authorizing document.  The analyst  must 
see that all of the changes, along with the code effected 
around them, are tested. This allows us to reduce the 
number  of test cases that we rerun on each succeeding 
flight. We don't  run cases over and over again for confi- 
dence but rather to accommodate new capabilities. 

The test cases for STS-2 aren ' t  a subset of the first 
1000-- they may consist, say, of 200 new tests and 200 
repeats. By STS-3, there may be 300 total cases, some 
new and some significantly modified. The rendezvous 
capacity, for example,  was a whole new set of code that 
we had to build 70 new cases for. 

AS. About how long does it take to build a typical 
case? 
Clemons.  It takes one person about two weeks. 

AS. On the whole, are you satisfied with your soft- 
ware engineering? 
Clemons.  The state of the art in software engineering 
has advanced significantly in the decade since we 
started this program. A more thorough approach to de- 
sign reviews, code walk-throughs, and unit  test inspec- 
tions has been formulated. We've been able to start 
applying these techniques rigorously only in the last 
several years. We always did design and coding inspec- 
tions, but not as meticulously as we do now. Though 
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these inspections are painful and expensive, we would 
apply that kind of rigor from the beginning if we had it 
all to do over again. It's easier for people to get used to 
this kind of rigor if it's in place from the beginning, and 
quite frankly, it's more cost effective to discover our 
errors early in the process. 

DG. How does your IVV team work? 
Clemons. Let me review some testing terminology. 
Classically, at the unit test level there is white box test- 
ing: The tester knows the design and tests the code 
against it. Theoretically, all requirements have been 
taken into account in the design, so unit testing does 
not have much of a requirements perspective. Black box 
testing is just the opposite: Software is tested strictly in 
terms of how well it meets the requirements. This is 
the traditional approach to IVV testing. 

Where there are requirements that have been imple- 
mented incorrectly, or not at all, black box testing will 
find the discrepancies. White box testing, however, 
should identify instances of programmer "creativity," 
since this is code that goes beyond the letter of the 
requirements. Errors introduced into this code will not 
generally be found by comparing code performance to 
requirements. To find these errors with higher proba- 
bility, we need a group of independent people who can 
look at the code, test it, and examine it from a black 
box and a white box point of view. This pushes our IVV 
effort toward gray box testing. 

Our IVV team was originally a black box operation. 
Once the requirements were specified, we constructed 
procedures to test our code. Our initial philosophy was 
that, if we ran enough test cases, we would find all of 
the problems. However, we soon discovered that it's 
much better if the IVV organization is intimately famil- 
iar with the code, that is, if they're doing gray box 
testing. The argument against this is that verifiers are 
going to loose their objectivity if they're involved with 
the design. Our experience, however, shows that gray 
box testing lets us find many problems that can't be 
found by simply running test cases. 

Our verification analysts first study and understand 
the requirements, then build the test specifications and 
the procedures to test the requirements, and only then 
perform a code inspection. They expand and supple- 
ment their test plan based on that inspection. This 
maintains a degree of objectivity. I was able to get a 
quantitative measure of the efficiency of this approach 
when I had responsibility for a department that was 
verifying support functions. This group had not previ- 
ously done any code inspections as a routine part of 
their verification. I was able to make comparisons be- 
tween them and three departments I already managed 
that were doing guidance, navigation, and control 
(GNC) verification. I tracked the number of discrepancy 
reports that each organization was discovering. On a 
per capita basis, the GNC people were finding many 
more discrepancies than the new people were. But be- 
yond that, over one-half of the discrepancy reports 

found by the GNC people were by code inspection. This 
is a much less costly way of finding problems than 
running test cases. The approach taken by the GNC 
people required engineers who could look at software, 
use it as a tool, understand it, and yet maintain verifi- 
cation independence. The payoff is tremendous. If I had 
it to do over, I would insist on independent code in- 
spection as a mandatory part of the verification process 
for the entire program. 

AS. As you know, the academic research community 
has devoted a lot of effort to analytic verification tech- 
niques for programs, by means of proof techniques of 
one form or another. Has any of this work been useful 
to you yet? 
Clemons. We've just started looking at these tech- 
niques. We haven't tried to use the analytic verification 
techniques as a standard on the project to date, either 
on the development side or on the verification side. My 
experience with them has been that they are useful for 
relatively small pieces of code that aren't complicated 
too much by real-time interrupts. Also, the proofs are 
exceedingly tedious without special tools. 

I believe that if we asked our people to analyze Shut- 
tle code using those techniques (1) their training might 
not be appropriate; (2) the complexity and size of this 
particular piece of software would be too large to ex- 
periment with; and (3) there wouldn't be a lot of data 
available that could indicate whether the techniques 
were valid, except in very small applications. There are 
pilot projects within the IBM/FSD to use these tech- 
niques, and I hope they bear fruit. 

TESTING FACILITIES 

DG. Could you describe the different testing facilities 
and how they were used for the development of the 
Shuttle software? 
Clemons. The primary software development and test 
facility that IBM uses is called the Software Production 
Facility, or SPF. The SPF contains large IBM main- 
frames--3033 and 3083 machines. Those machines pro- 
vide an interface to the terminal users and to the pro- 
grammers and verifiers that allows them to do all their 
work from remote terminals. The SPF physically con- 
trols the allocation of resources among the program- 
mers, and provides a simulation test bed of the Space 
Shuttle vehicle and the vehicle environment during 
flight. The SPF also contains math models that allow us 
to simulate all aspects of the Shuttle mission, from 
countdown through landing, with a very high degree of 
fidelity. 

The mainframes are connected to Flight Equipment 
Interface Devices, or FEIDs. These are hardware com- 
ponents, specially built by IBM in Huntsville, Alabama, 
that interface the flight computers to the simulated en- 
vironment. In a typical test, we load the flight code into 
target AP-101 flight computers connected to the main- 
frames. Math models with the environment data that 
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correspond to the flight that we're simulating are also 
loaded into the mainframes. In addition, the FEIDs al- 
low us to interrupt and freeze the flight computers on 
any specified instruction fetch or data reference within 
the GPC memory. We can examine computer data, 
transfer the data into engineering units, make graphs 
and tables, and insert patches. We have similar capabil- 
ities with the simulated environment. For example, a 
verification analyst who is simulating an ascent and 
wants to see that the ascent guidance is working 
properly under an engine failure condition can build an 
ascent launch trajectory, stop the simulation at an ap- 
propriate time, cause the failure to be introduced into 
an engine, and then resume execution and monitor 
what happens. It's a very powerful development tool. 

The programmer or verification analyst can sit at a 
terminal and build a test deck that is a step-by-step 
walk through the portion of the flight profile in ques- 
tion. After being submitted into the simulator's execu- 
tion queue, the test deck is scheduled. It then executes 
and produces a step-by-step listing that contains all the 
desired information. 

This simulator is the key to our ability to test flight 
software and is quite versatile: For example, if I have 
an analyst interested in examining the last few seconds 
of a flight prior to touchdown, it's obviously not practi- 
cal to go through an entire launch, various orbital oper- 
ations, and entry just to get to that point. We can exe- 
cute a set of nominal loads, ascents, orbits, and entries, 
and generate checkpoints following their execution. We 
can then arrange the simulation to restart from any one 
of those points. A verifier interested in a certain point 
of the mission can start at the checkpoint nearest to 
that point. 

AS. Is this facility in use continuously? 
Clemens. Constantly. Three shifts a day. 

DG. What happens if you want to test something 
having to do with the display consoles? 
Clemons. There are two ways of doing that. We have a 
set of simulated display console input commands and 
the capability of providing graphic representations of 
what the display response is. If we need more dynamic 
information about the displays, there are display input 
hardware devices and CRTs available that make it pos- 
sible to call the displays up physically and photograph 
them. We minimize this kind of hands-on testing be- 
cause simulator time is very precious. 

DG. Can you use the mainframes for anything be- 
sides simulation? 
Clemens. Yes. The mainframes run MVS, which 
means that we can support many types of applications. 
Interactive terminal jobs get priority, and flight simula- 
tion jobs (FEID jobs) run in the background. At night, 
the simulations are run, so typically there is no more 
than a one-day turnaround on flight simulations. 

Macina. The SPF is a massive facility: In terms of 
hardware, it has two IBM 3033s, a 3083, 95 gigabytes of 
disk storage, three AP-101 flight computers, and associ- 
ated support devices. We had as many people develop- 
ing software for the SPF at one time as we had develop- 
ing the on-board software. The software effort was 
really twofold: software for the host computers (simula- 
tor and program management software) and software 
for the FEIDs. The most difficult development problem 
was interfacing the various unlike pieces of hardware 
that make up the simulator portion of the facility. 

DG. Aren't there other test beds that are actually 
more authentic than the SPF, and could you give us a 
description of them? 
Clemens. A point to make first is that none of the 
other facilities have software testing as their primary 
objective. They use software as a tool for testing other 
things. There's the Shuttle Avionics and Integration 
Laboratory (SAIL), which is owned by NASA but oper- 
ated by Rockwell. SAIL integrates the software with the 
hardware. Remember that, except for the flight com- 
puters, our SPF does not contain the facilities you 
would find in a real vehicle (e.g., actuators). SAIL tests 
the integration of the hardware and software compo- 
nents for every flight. There's also a simulator at Rock- 
well's facility in Downey, California, called the FSL 
(Flight Systems Lab). 

DG. What does that do? 
Macina. It's similar to SAIL in that it does for the on- 
orbit and entry portions of the flight what SAIL does for 
the ascent portions. 

Clemens. The other important simulator is the crew 
trainer, what is called the Shuttle Mission Simulator or 
SMS. The SMS gives us a test environment we can't get 
elsewhere--the crew's perspective on how they use the 
software. The people who run the SMS have rather 
devious minds and generate some crazy scenarios that 
nobody at IBM could ever have envisioned. They run 
through various ascents, orbits, and entries in order to 
see how the crew and software will react to unusual 
situations. 

The crew also has another simulator that does not 
use the flight software. It uses a functional equivalent 
of the flight software, and video picture displays. It pro- 
vides two-dimensional representations of different 
things the crew would see through the cockpit win- 
dows. As they work the instruments, they can look at 
this simulator and see just what they would be seeing if 
they were flying. It's very realistic. 

Macina. The main training cockpit is identical to the 
Shuttle cockpit. It has a hydraulically driven moving 
base that gives some feeling for G forces. It vibrates on 
launch and bumps on landing. Suffice it to say that it 
provides a very faithful representation. NASA has been 
using this technology since the moon landing. 

September 1984 Volume 27 Number 9 Communications of the ACM 885 



Reports and Articles 

AS .  Could you describe a training scenario on the 
SMS that caused a problem for you? 
Clemons.  Yes-- i t  was a "bad-news-good-news" situa- 
tion. In 1981, just before STS-2 was scheduled to take 
off, some fuel was spilled on the vehicle and a number  
of tiles fell off. The mission was therefore delayed for a 
month or so. There wasn' t  much to do at the Cape, so 
the crew came back to Houston to put in more t ime on 
the SMS. 

One of the abort simulations they chose to test is 
called a "TransAtlantic abort," which supposes that the 
crew can nei ther  re turn to the launch site nor go into 
orbit. The objective is to land in Spain after dumping 
some fuel. The crew was about to go into this dump 
sequence when all four of our flight computer  ma- 
chines locked up and went  "catatonic." Had this been 
the real thing, the Shutt le would probably have had 
difficulty landing. This kind of scenario could only oc- 
cur under  a very specific and unl ikely combinat ion of 
physical  and aerodynamic conditions; but there it was: 
Our machines all stopped. Our greatest fear had materi-  
a l i zed - -a  generic software problem. 

We went  off to look at the problem. The crew was 
rather upset, and they went  off to lunch. 

AS. And contemplated their future on the next mis- 
sion? 
Clemons.  We contemplated our future too. We ana- 
lyzed the dump and determined what  had happened. 
Some software in all four machines had s imultaneously 
branched off into a place where there wasn ' t  any code 
to branch off into. This resulted in a short loop in the 
operating system that was trying to field and to service 
repeated interrupts.  No applications were being run. 
All the displays got a big X across them indicating that 
they were not being serviced. 

AS. What does that indicate? 
Macina .  The display units are designed to display a 
large X whenever  the I / O  traffic between the PASS 
computers and the display is interrupted.  

Clemons.  We pulled four or five of our best people 
together, and they spent two days trying to unders tand 
what  had happened. It was a very subtle problem. 

We started outside the module with the bad branch 
and worked our way backward until  we found the code 
that was responsible. The module at fault was a mult i -  
purpose piece of code that could be used to dump fuel 
at several points of the trajectory. In this part icular  
case, it had been invoked the first t ime during ascent, 
had gone through part of its process, and was then 
stopped by the crew. It had stopped properly. Later on, 
it was invoked again from a different point in the soft- 
ware, when it was supposed to open the tanks and 
dump some addit ional fuel. There were some counters 
in the code, however,  that had not been reinitialized. 
The module restarted, thinking it was on its first pass. 
One variable that was not reinit ial ized was a counter  
that was being used as the basis for a GOTO. The 
code was expecting this counter to have a value be- 

tween 1 and X, say, but  because the counter  was not 
reinitialized, it started out with a high value. Even- 
tually the code encountered a value beyond the ex- 
pected range, say X + 1, which caused it to branch out 
of its logic. It was an "uncomputed" GOTO. Until we 
realized that the code had been called a second time, 
we couldn' t  figure out how the counter  could return a 
value so high. 

We have always been careful to analyze our proc- 
esses whenever  we've done something that 's  let a dis- 
crepancy get out. We are, after all, supposed to deliver 
error-flee code. We noticed that this discrepancy re- 
sembled three or four previous ones we had seen in 
more benign conditions in other code modules. In these 
earlier cases, the code had always involved a module  
that took more than one pass to finish processing. These 
modules had all been interrupted and didn ' t  work cor- 
rectly when they were restarted. An example is the 
opening of the Shuttle vent doors. A module init ial ly 
executes commands to open these doors and then 
passes. A second pass checks to see if the doors actually 
did open. A third pass checks to see how long t ime has 
run or whether  it has received a signal to close the 
doors again, etc. Important  status is mainta ined in the 
module between passes. 

AS. Isn't flight control multipass? 
Clemons.  Yes, in a broad sense. But every pass 
through flight control looks like every other. We go in 
and sample data, and based on that data, we make 
some decision and take action. We don' t  wait  for any 
set number  of passes through flight control to occur. 

For the STS-2 problem, we took three of our people, 
all relat ively fresh from school, gave them these dis- 
crepancy reports (DRs) from similar problems, and 
asked for help. We were looking for a way to analyze 
modules that had these multiple-pass characterist ics 
systematically. After working for about a week and a 
half, they developed a list of seven questions that they 
felt would have a high probabil i ty of trapping these 
kinds of problems. To test the questions, we con- 
structed a simple experiment:  We asked a random 
group of analysts and programmers to analyze a hand- 
ful of modules, some with these type of discrepancies,  
some without.  They found every one of the problems 
and gave us several false alarms into the bargain. We 
were confident they had found everything. 

We then called everybody in our organization to- 
gether and presented these results. We asked them to 
use these seven questions to "debug" all of our m0d- 
ules, and ended up finding about 35 more potential  
problems, which we turned into potential  DRs. In many 
instances, we had to go outside IBM to find out whether  
these discrepancies could really occur. The final result 
was a total of 17 real discrepancy reports. Of those, 
only one would have had a serious effect. 

It turned out that this one problem originated during 
a sequence of events that occurred during countdown. 
A process was invoked that could be in terrupted if 
there was a launch hold. The only way it would be 
reset to its correct init ialization values was if a signal 
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was sent from the ground when the launch process was 
restarted. We incorrectly assumed that this signal was 
always sent. Had we not found this problem, we would 
have lost safety checking on the solid rocket boosters 
during ascent. We patched this one for STS-2 right 
away. 

In retrospect, we took a very bad situation and 
turned it into something of a success story. We felt very 
good about it. This was the first time we'd been able to 
analyze this kind of error systematically. It's one thing 
to find logic errors, but in a system as complex as this, 
there are a lot of things that are difficult to test for. 
Despite a veritable ocean of test cases, the combination 
of requirements acting in concert under certain specific 
conditions is very difficult to identify, let alone test. 
There's a need for more appropriate kinds of analysis. 

DG. How confident were you beforehand that this 
kind of thing couldn't happen? 
Clemens. We were confident, but we understood that 
there are always risks when humans do software devel- 
opment and testing. Prior to that time, we had done 
everything possible to test the software; we had used all 
of the techniques available to us, even going so far as to 
explicitly ask people to look for initialization and 
cleanup problems. The nature of the errors that we 
discovered up to that time did not point us to anything 
more generic to search for in the design. If you're sug- 
gesting that there could be other classes of things like 
this multipass problem that we haven't  addressed yet, 
though, it's possible. 

Despite all our analysis and testing, the remote and 
convoluted combination of events that can finally break 
a module concerns me. Of the few errors our process 
has missed, the preponderance have been of that kind. 
We've collected enough of them now so that I've been 
able to put a task team on them to do exactly what we 
did for multipass. The discrepancy reports are not 
linked by anything other than the fact that they oc- 
curred in scenarios where there were a lot of unlikely 
conditions that occurred in combination before the soft- 
ware got to the error. We haven't  encountered anything 
as bad as the STS-2 crew training incident, but we have 
gotten some discrepancy reports. Hopefully, this task 
team will come up with another breakthrough. 

DG. Everybody in the computer business has been 
surprised at the frailty of the human mind at times. 
We create immense systems with complex internal in- 
teractions that we have little hope of understanding. 
As you add function to the Shuttle system and its 
follow-ons, will you really be able to understand 
enough about that software and its interactions to ver- 
ify its performance adequately? Would you ever con- 
sider saying, "Yes, I can add that function, but I don't 
feel confident enought to verify that it would function 
correctly"? 
Clemens. We have, on occasion, urged NASA to forgo 
new capability enhancements for just those reasons. 
There are some nonmandatory changes that would be 

awfully nice but are just too complex. We have stead- 
fastly resisted making any changes to the operating sys- 
tem. As we get further away from our base set of test 
cases, there are certain classes of changes that become 
just too risky. 

Macina. Consider this example: When the on-board 
system is running as a redundant set, it's possible for 
the crew to have the same display up on two CRT 
units. Two crewmen could be accessing the same set of 
software in an unprotected way. Because this could 
result in intercomputer communications problems that 
might cause the redundant set to break apart, NASA 
would like us to come up with some way to protect 
against such concurrent usage. To provide this added 
protection would require a major redesign of the user 
interface software, a function that has remained rela- 
tively stable over the past five or six flights. We believe, 
and NASA agrees, that the risk of the crew not syn- 
chronizing their use of the displays is lower than the 
risk associated with redesigning the user interface por- 
tion of the operating system. 

DETAILED SYSTEM OPERATION--NO 
REDUNDANCY 

DG. We thought it would be a good idea to talk about 
the system first without considering redundancy--as 
though the whole system were operating on a unipro- 
cessor. We can go over the redundancy later in greater 
detail. For something like ascent, then, let's take some 
of the highest priority tasks and discuss inputs, out- 
puts, displays, and so on. 
Macina. The highest priority application task in all 
flight phases is the flight control high frequency execu- 
tive (HFE). It runs once every 40 milliseconds. It's 
scheduled cyclically and executes to completion within 
8 to 12 milliseconds, depending on the cycle. When it's 
scheduled, it identifies the cycle and performs a table 
lookup to determine which processes to execute. Before 
the HFE begins its computations, it initiates I /O  to col- 
lect the sensor information it needs. Typical sensors are 
rate gyros, accelerometers, etc. This information is 
combined with commands from the guidance software. 
The HFE then goes through typical flight control algo- 
rithms, and a command output is issued to the appro- 
priate vehicle effectors via the data bus network. 

AS. Is the on-board system doing active control dur- 
ing ascent? 
Macina. Yes. It takes a very active high-frequency 
control system to keep the Shuttle vehicle stable during 
ascent. The engines are gimballed frequently since the 
vehicle is inherently unstable. The typical ascent is 
completely under computer control, and the crew is 
essentially along for the ride if no failures are encoun- 
tered. 

AS. Do you control the flight surfaces much on as- 
cent? 
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Macina. Yes. As the vehicle goes through high dy- 
namic pressure regions, loads begin to build up on the 
orbiter wings. The aerodynamic surfaces are deflected 
to minimize this effect. 

DG. Is flight control also reading information from 
the crew? 
Macina. What I've been describing so far is essentially 
the automatic flight control system. The crew, how- 
ever, has the capability to fly the Shuttle in all flight 
regimes. Because of the inherent instability of the vehi- 
cle during the ascent phase and its rapid acceleration, 
however, it would be very difficult for them to main- 
tain control. During on-orbit operations and entry, the 
crew can throw a switch to go from auto to manual 
mode. Commands are still filtered through the flight 
control software but are initiated by a crew member. 
Typically, the crew flies the vehicle manually in the 
lower portions of the entry trajectory. 

DG. After flight control, what task has the highest 
priority? 
Macina. For the uniprocessor model, guidance is the 
next highest priority task, running every 160 millisec- 
onds. Guidance uses iterative algorithms to steer for a 
particular point in space. It collects data from sensors, 
receives state information from the navigation software, 
and issues command information to the flight control 
software when in the auto mode. In the manual mode, 
guidance commands are provided to the crew on CRT 
displays or through the full array of aircraft instrumen- 
tation. 

AS. What's the next highest priority? 
Macina. After guidance comes navigation. Navigation 
collects vehicle acceleration and rate data from the in- 
ertial measurement units and navigation aids and com- 
putes the position of the vehicle in inertial space using 
a Kalman filtering technique. Navigation runs every 
two to four seconds, dependin~ on the flight phase. 

What I have described are the major processes. There 
are a number of other processes interspersed at various 
priorities. One such process is the software that con- 
trois the crew CRT displays. One task polls the key- 
board and another outputs to the display. These tasks 
run every 480 milliseconds--a little more frequently 
than navigation and a little less frequently than guid- 
ance. 

Other cyclic processes put data together for the 
downlist and monitor the uplink. There are also on- 
orbit processes for the payload bay doors and the re- 
mote manipulator arm. 

AS. Are there any processes that run on demand? 
Thomas. Things can be scheduled by means of 
keyboard input: cyclically or just for one shot. There 
are as many as 70 or 80 total individual processes that 
can be scheduled this way. For example, a crewman 
can request the system to incorporate TACAN data, 
thereby initiating a process. Altogether, there are typi- 

B.J. THOMAS 
B.J. Thomas is currently the manager of hardware engineer- 
ing for the Space Shuttle Programs in Houston. He has been 
with IBM since 1965, working on the Apollo~Saturn Pro- 
gram and the Army Safeguard Program before joining the 
Shuttle team in 1974. He was formerly manager of software 
test and operations. 

cally about 18 active processes (either waiting for some- 
thing or running} during the ascent and the entry 
phase. 

AS. The Shuttle has to maintain an environment for 
the fragile human beings inside. Is the PASS involved 
in this process? 
Macina. The PASS performs a fault detection function 
that monitors the environment and alerts both the crew 
and the ground if it detects anything outside safe pa- 
rameters. These are part of the reconfiguration param- 
eters that can be changed from mission to mission. It 
does not, however, control the environment. 

AS. How many sensors do you monitor? 
Killingbeck. Most of the critical sensors. We pick up 
the data by reading the PCMMU telemetry stream. The 
sensors dump their data into its memory for telemetry, 

LYNN KILLINGBECK 
L.C. (Lynn) Killingbeck is a senior systents analyst at IBM in 
Houston. He began work on the multiple computer system of 
the Space Shuttle Program in 1969, with emphasis on re- 
dundancy management, fault detection and isolation, com- 
puter synchronization, and techniques to assure identical 
inputs to and outputs from all computers. He is currently 
working on the definition of the flight data system for the 
Space Station Program. 
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and the computer picks them up at that point. 

AS. How do the uplink and the downlink work? 
Macina. The PCMMU collects data from subsystems 
and sends them through a network signal processor, 
which converts them into radio signals to be sent down. 
About half of these data come directly from various 
subsystems that are independent of the data processing 
system, and the other half originate in the flight com- 
puters. A process in the flight computers running cycli- 
cally collects parameters from the various software 
modules and writes them into a memory in the 
PCMMU. There are thousands of parameters that can 
be monitored--they vary from mission to mission. 

Spotz. From the standpoint of the PCMMU, the on- 
board computers are just another source of telemetry 
data. The PCMMU monitors data directly from the ve- 
hicle, formats them, and sends them to the ground. 
During that p'rocess there's an area in the unit's mem- 
ory called the OI RAM (Operational InstrumentatiQn 
RAM) where the GPC processor can read data that we 
can't get directly from this bus network. 

AS. Are there times when the Shuttle is not in con- 
tact with the ground? 
Macina. Yes. On earlier flights, data would be re- 
corded on-board whenever the Shuttle was out of range 
of the network of ground stations. The tapes were 
played back to the ground stations during sleep periods. 
Once the TDRS satellites are deployed, we'll have 
much better coverage (we expect to be in touch 80-90 
percent of the time). 

AS. Do you know what the data rate is? 
Macina. There is a high data rate (128 Kbits/sec) and 
a low data rate (64 Kbits/sec). 

DG. Is the uplink encrypted? 
Macina. An operating system-type program in each 
running computer takes the uplink in and examines 
the header information to determine the appropriate 
software destination. To protect ourselves from any ma- 
licious ground senders, the system will not accept any- 
thing when the Shuttle is out of sight of NASA ground 
stations. The link, however, isn't encrypted. 

Killingbeck. There are ways to protect against trans- 
mission errors. We have end-to-end checking, since 
many commands are in two stages. A command will 
not be acted on until it's been sent back to the ground 
and confirmed. Critical things, like the loading of state 
vectors, are always done in two stages. 

Eiland. There's also range testing for some of the vari- 
ables, depending on which application receives the 
uplink message. That's a second level of protection. 

Spotz. Keep in mind that the uplink does not usually 
relay much information for controlling the vehicle. The 

most important thing is the updated state vector, which 
is sent up about once every two orbits and is only about 
100 bytes. 

DG. What's the channel capacity of the uplink? 
Killingbeck. The software can accept commands about 
once every 160 milliseconds. The buffer is 32 words. 

AS. I noticed that you don't have an alphanumeric 
keyboard--the system doesn't seem to be particularly 
user friendly. Can you tell us a little bit about the user 
interface? 
Thomas. The software is structured into mission 
phases--ground checkout, GNC, and payload and sys- 
tem management are the three functions. Assuming the 
astronaut has been in the ground checkout phase at 
T-20 minutes, he or she would type OPS 101 PRO 
(OPS and PRO are function keys). This would cause the 
ascent profile to be loaded off mass memory and enable 
the computers to handle the ascent. 

We present a display that shows the ascent trajectory. 
This is mode 101 of the ascent software. With solid 
rocket booster ignition, the software goes into mode 
102. A lot of it is automatic moding, whereby software 
recognizes that an event has occurred. At booster stag- 
ing, for instance, a function will get rid of the rocket 
boosters when it senses a drop in the chamber pressure. 
The software then modes to the second stage guidance, 
mode 103. 

On-orbit, there are a lot of displays available for call 
up. For instance, the software announces faults by 
means of an audible tone in the cockpit and a message 
at the bottom of all of the CRT screens. A message 
might say "Fuel cell problem, see Display 201." The 
astronaut would then type in "SPEC 201 PRO," which 
would call up a display with more detailed information. 

AS. Is it true that you've got an overlay that lets the 
crew play an outer space video game with real vehicle 
dynamics? 
Thomas. No, that's not true. As a matter of fact, IBM is 
particularly interested in asset protection, and we made 
sure the computers were being used for business pur- 
poses only. I don't really think the AP 101 lends itself 
to games, anyway. 

DG. Have you made software changes to make the 
interface more user friendly? 
Macina. In fact, a lot of the changes that are coming 
up in the near future are of this type. This is because, 
as the missions come more frequently, the crews will 
have less time for training. 

DG. How forgiving is the current user interface? 
Macina. The crew would have to do something really 
nonsensical to get into trouble. We don't know of any 
subtle things that could give them any problems. 

Thomas. If they do something wrong, the display tells 
them to try again. 
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FIGURE 4. Abort Simulation Display 

This display was generated by an abort simulation on the 
SPF. It shows the actual information that the PASS would 
provide to the crew midway through an abort. 

The number on the upper left (6011) and the label RTLS 
TRAJ indicate that this is a display used during a return to 
launch site. The date and time in the upper right (000/ 
00:11:58) indicate the day of the mission and the number of 
hours, minutes, and seconds that have elapsed since lift-off. 
The data and time below are a timer that the crew can use 
as they wish. 

TMECO 12:11 indicates the predicted time of main engine 
cutoff, in minutes and seconds from launch. PRPLT 4 indi- 
cates the percentage of propellant remaining in the external 
fuel tank. 

The horizontal axis shows the horizontal velocity of the 
Shuttle. The inverted triangle above it moves leftward as the 
current horizontal velocity increases. The tick mark labeled 
CO indicates the horizontal velocity at which engine cutoff 
should occur. The tick mark labeled PD indicates the hori- 
zontal velocity at which the vehicle must be pitched down to 
permit external fuel tank separation during a two-engine 
powered return to launch site. The tick mark labeled PD3 is 
similar but is used for a three-engine powered return to 

launch site. 
The right-pointing triangle to the left of the vertical axis 

shows the vertical velocity with respect to the nominal verti- 
cal velocity for this point in the abort, which is indicate~ by 
the zero. Generally, the right-pointing triangle should be very 
close to the zero mark. 

The curved lines in the center of the screen are not plotted 
against these two axes--essential ly, this is two displays in 
one. 

The right-most curve (a) is the statically drawn plot of the 
nominal ascent profile, showing altitude versus horizontal ve- 
locity. The angular line in the central-bottom portion of the 
screen (b) shows the minimum altitude and horizontal veloc- 
ity required to achieve a safe landing after a single-engine 
failure. The two short curved lines above and below this ((c) 
and (d)) represent limits on dynamic pressure for external fuel 
tank separation to be successful. The central curved line (e) 
shows the last opportunity for ,~ return to launch site. Data 
from the navigation system of the PASS are used to dynami- 
cally update the triangle located in the lower right-hand por- 
tion of the screen; this shows the current vehicle altitude and 
horizontal velocity. The two nearby circles predict the state 
30 and 60 seconds into the future. 
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Macina. Typically, astronauts don't  want  too much 
protection, since it would cut down on flexibili ty and 
make the system very rigid. 

DG. From your experience in working with crews in 
the simulator, do you find that they learn to trust the 
system more as they work with it more? 
Thomas. Definitely. The STS-6 crew had three extra 
months to train after a postponement,  and seemed to 
have an easier time with the system as a result. 

AS. Has human error or mistraining led to any 
strange situations? 
Thomas. There was an odd incident  on one of the 
recent flights. We usually expect the crew to keep two 
displays on the pr imary system; during ascent, how- 
ever, we expect them to have one display on the pri- 
mary and one on the backup. This part icular  crew had 
two displays on the backup, one showing fault detec- 
tion, the other the ascent trajectory. They had swapped 
displays in the middle of the ascent, which made us 
think we had CRT errors in the primary. This was a 
matter  of the crew's preference: There was no reason 
not to switch, but we were concerned. 

AS. What errors did you see? 
Macina. When displays are transferred from the PASS 
to the BFS, transient I / O  errors are produced for a 
while. These are reported on the te lemetry downlink. 
I / O  error messages are produced whenever  a commu- 
nication path is severed by crew action or a failure. 

DG. Considering guidance, navigation, and flight 
control, would you say the applications were written 
using data abstraction techniques? 
Killingbeck. I don't  think that modern notions of data 
abstractions were applied. A lot of this design dates 
back to the Mercury, Gemini, and Apollo days. We've 
stayed with what  we consider a classical structure for 
flight control systems. I don't  think we've got anything 
remotely close to data abstractions in the advanced 
sense of the term. 

AS. What would happen if flight control didn't run 
at the appropriate times? 
Macina. It's a typical digital flight control problem. 
Say you're  collecting sensor data and you want  to issue 
a command based on that data. If your processing takes 
too long, the data get stale and the command you send 
out isn't  going to reflect the current  state of the vehicle. 
This is what  is known as "transport lag." Excessive 
transport lag can cause vehicle control instabilities. For 
the Shuttle, the delay between data collection and com- 
mand issuance can be no longer than 18 milliseconds. 

We have a secondary flight control requirement  
called jitter. It's a requirement  mandating the variation 
in the interval between initiations of the flight control 
task (or more directly, between the output commands). 
The requirement  is plus or minus 800 microseconds. 

AS. Are there any processes that have a higher 
priority than the flight control process on an emer- 
gency basis? 
Macina. No. Our applications priorities are numbered  
0 to 255. Flight control is 255. The only thing having a 
higher priority is the operating system, and it will not 
normally interfere with ei ther the transport  lag or the 
jitter requirements  of the flight control application un- 
less there are massive I / O  errors. 

BILL SPOTZ 
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Systems Division in Houston. He joined IBM, and the Space 
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ment, subsystem testing, and flight support of the on-board 
software. He is currently investigating advanced software 
technology applications for the Space Station Program. 

REDUNDANT SET OPERATION 

Spotz. As you know, we have four computers all in a 
synchronized redundant  set for ascent and entry appli- 
cations (during the on-orbit phase, different computers 
are running different applications). In the redundant  
set, all of the computers get identical  inputs and do 
whatever  synchronizat ion is necessary to ensure identi-  
cal processing. There are four sets of critical buses, and 
each GPC is connected to each bus via the IOP. Typi- 
cally, a GPC listens to all the buses but commands only 
one. Connected to these buses are the MDMs (Multi- 
plexor/Demult iplexors) ,  which interface to the Shut- 
tle's sensors and effectors. In the typical mode of opera- 
tion, a single GPC sends a command to an MDM and 
then all of the GPCs receive the data in response to that 
command. Because there are never two masters of the 
same bus, two GPCs never try to do I / O  on the same 
bus at the same time. 

There 's  a special feature in the IOP itself that handles 
the differences between the commanders  and the lis- 
teners. If the transmitter  is turned on when a GPC 
issues a receive data command, the IOP assumes that 
the processor has already sent the command and imme- 
diately starts looking for the data. If the t ransmit ter  is 
not on, it assumes that another  computer  is going to 
send the command, looks for the command on the bus, 
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and then starts its t ime-out wait ing for the data. We 
init ially synchronize on the command going out and 
then later on the data coming back, which are received 
in all of the computers simultaneously.  Thus, all of the 
computers get all of the data at the same time. 

DG. Are the display keyboards one kind of sensor? 
Spotz. Yes. As one computer  polls the on-board dis- 
play unit for keyboard entries, all of the computers get 
the data that come back, so all see the keystrokes from 
the crew members.  

DG. How do you determine which GPC is the com- 
mander of a particular bus? 
Spotz. That 's  controlled by a table in the software that 
the crew can update. Normally,  though, when there are 
four GPCs functioning, the first commands string one, 
the second commands string two, etc. 

AS. What about synchronizing the computers be- 
tween I/Os? 
Killingbeck. I / O  requests have to be synchronized 
closely enough for each listener to issue its receive 
command early enough to hear  the commander  issue 
its command. We synchronize the computers with soft- 
ware first and then start the I /O.  We have also sepa- 
rated the commander  and l istener IOP code. The com- 
manding processor's IOP has a channel  program that 
starts with a fairly sizable delay to ensure that the 
listeners issue their  receives first. So, even if we start 
the l istener 's  channel  program a little bit late, it will 
have time to reach the receive before the commander  
ever sends out its command. 

AS. You must have some complicated techniques for 
dealing with I/O errors. 
Spotz. Just consider flight control. It has an input  that 
occurs 25 times a second. That input  is s imultaneously 
sampling sensors on eight data buses. We have to be 
very careful to read the three inertial  measurement  
units (IMUs) at the same t ime so we can make a 
meaningful comparison of their  values. Each of these 
transactions is really an I / O  (channel) program that the 
IOP is executing. 

Potentially, we can have I / O  errors on any or all of 
the eight buses. Each computer  has to know what  the 
other computers '  perceptions of errors a r e - - i f  any one 
computer  rejects data because of an error, the rest of 
them have to reject those same data. 

AS. How can you know that all of the computers 
have picked up an error that occurred in only one of 
them? 
Spotz. First of all, when the I / O  complet ion occurs, 
we have to synchronize by exchanging completion 
codes on discrete in tercomputer  lines that are separate 
from the data buses. There are two codes that are used 
to synchronize at I / O  completion. One indicates a nor- 
mal completion, the other an error. If no computer  indi- 
cates an error, there 's  no problem. If any computer  in- 

dicates an error, then more detai led information is ex- 
changed. In any event, the erroneous information must 
be ignored by all of the machines if they are to stay in 
sync. On a second consecutive error, the e lement  caus- 
ing the problem is bypassed if at least two computers 
see the same error. If only one computer  sees it, that  
computer is removed from the redundant  set. 

Macina. Since I / O  errors use processing t ime that  
might otherwise be used for applications execution,  
cyclic processing delays can result in ext reme cases 
with intermit tent  I / O  errors. This brings about an in- 
teresting situation. Say there were I / O  errors that  took 
up so much processing t ime that flight control couldn ' t  
finish a part icular  cycle before it was supposed to start 
a new one. This is what  you were suggesting a minute  
ago when you asked what  would happen if flight con- 
trol didn ' t  run on time. In this si tuation flight control 
would finish its current  cycle and then skip the next  
cycle. This would temporari ly  off-load the system until  
the operating system could clear the I / O  error condi- 
tion. 

AS. Does this happen operationally? 
Spotz. It's a graceful degradation, but  it doesn' t  really 
happen in the current  system. The ALT program had a 
lot of problems with loading, because our CPU utiliza- 
tion was over 90 percent.  Almost anything caused cy- 
cles to skip. The only problems we see now are in the 
simulator, and those are due to differences in the simu- 
lator displays. Instead of updating a display every half  a 
second, it only updates every second. 

DG. How do you use redundant sensors? 
Macina. Redundant  sensors are connected to separate 
MDMs for input  data. For example,  each rotational 
hand controller (stick) is connected to three buses. Each 
unit  has three transducers and three wires that  meas- 
ure deflection. Each of those wires is connected to a 
separate MDM. Each MDM is tied to all GPCs via a 
separate bus of the data bus network. Therefore, each 
individual  sensor box has its own data path to every 
GPC. 

The redundancy management  software in each GPC 
contains algorithms for selecting the appropriate meas- 
urement  from redundant  sensors. The selection is based 
on the number  of available sensors and various com- 
parison algorithms like mid-value selection. 

AS. How are actuators controlled? 
Killingbeck. For the aerosurface actuators, each of the 
four computers sends out an independent  command on 
an independent  bus. With no failures, the commands 
should be identical.  The voting is done at the actuator  
using a hydraul ic  voting mechanism, called a force- 
fight voter. In it, there are four hydraul ic  ports called 
secondary ports, each commanded by one of the four 
GPCs. The secondary ports go into the pr imary ports, 
which are heavy-duty  actuators that connect to what ' s  
called a "summing bar," which is no more than a m a s -  
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sive steel rod. If there are three good computers and 
one bad one, the three good commands physically out- 
muscle the fourth. This limits the control authority a 
little bi t - -we don't  get the total force we'd like to get, 
but there's still enough power to control the vehicle. If 
you have a large enough pressure differential for a large 
enough time, the port is hydraulically bypassed, which 
relieves the pressure in that one port. The remaining 
three ports then regain their full authority. 

Macina. This voting is important, since a computer is 
never allowed to turn itself off or turn another com- 
puter off. The summing and bypass occur at the actua- 
tor; the bad computer continues to operate as if it were 
still controlling the vehicle. The communication and 
listen mode synchronization may be broken between 
the bad computer and the other three, but the bad 
computer still has control of its port and still issues 
commands on that data channel. 

DG. Which actuators vote, and when? 
Spotz. The thrust vector controllers vote during as- 
cent-- these control the pitch and yaw of all the en- 
gines. The aerosurface actuators (the elevens and rud- 
der) use force-fight voting during entry. The OMS (Or- 
bital Maneuvering System) engines, which are the on- 
orbit maneuvering system, also vote, although they use 
a somewhat different technique. 

Macina. The master events controller is the other 
voter. It's the device that handles pyrotechnical func- 
tions like firing and separating the boosters. The GPCs 
issue commands to this device, which in turn ignites 
the appropriate initiators. Voting in this case is an elec- 
trical process--important functions will not take place 
without two or three concurring votes. Booster ignition 
at lift-off, for example, won't  take place without three 
concurring votes. After lift-off, however, the booster 
can be separated with only two concurring votes. 

AS. We'd like to know why you used the voting 
strategy you did. Why didn't you use hardware voting 
at a much finer granularity, for instance? 
Killingbeck. We didn't use hardware voting because it 
would have required a very high bandwidth data bus. 
We were worried about physical damage with the pro- 
cessors close together, especially after that explosion 
back on Apollo 13. That's why the computers, the sen- 
sors, and the data buses are all physically separated on 
the vehicle. That's one reason why we don't  have a 
single, highly redundant, highly reliable processor. 

To understand our design, you have to look back to 
around 1970, when it was first devised. This was before 
distributed systems started getting a lot of attention 
from the universities. NASA had come to the conclu- 
sion that too much money had been spent on the 
Apollo, Mercury, and Gemini programs for analyzing 
reliability when in practice almost nothing ever failed. 
They wanted a system that could tolerate three failures 
in any subsystem. This is called the fail-operational/ 

fail-operational/fail-safe approach. It enables us to 
withstand two failures in the same type of system and 
still survive a third failure in an emergency. For prag- 
matic reasons, this was relaxed to fail-operational/fail- 
safe. In essence, we have three or four versions of all of 
our vital systems. Only nonvital functions are duplexed 
or simplexed. 

Now, with four computers, we had trouble with the 
fail-operational~fail-operational~fail-safe approach be- 
cause of our reliance upon majority voting. The fifth 
computer was brought in to ensure that voting would 
still be possible after two failures. When the require- 
ments were later changed to fail-operational/fail-safe, 
the fifth computer was used for the BFS. 

DG. Does anybody in your organization ever look at 
the backup system's software, or is that specifically 
prohibited? 
Macina. It isn't specifically prohibited. We need to un- 
derstand the interface between the PASS and the BFS. 
About 20 minutes prior to launch, we actually transfer 
data to the BFS. This is called a one-shot transfer. Dur- 
ing the flight we periodically send it data that would 
not otherwise be available to it. There's constant com- 
munication, which means that we need to know some- 
thing about their software. Their requirements are 
nearly the same, but their implementation is totally 
different. For example, they have a synchronous, time- 
slice type operating system, whereas ours is priority 
driven. 

DG. How did you choose this particular kind of sys- 
tem operation? 
Killingbeck. We originally looked at three redundancy 
management schemes. First, we considered running as 
a number of totally independent sensor, computer, and 
actuator strings. This is a classic operating system for 
aircraft--the Boeing 767, for example, uses this basic 
approach. We also looked at the master/slave concept, 
where one computer is in charge of reading all the 
sensors and the other computers are in a listening 
mode, gathering information. One of the backups takes 
over only if the master fails. The third approach we 
considered is the one we decided to use, the distributed 
command approach, where all the computers get the 
same inputs and generate the same outputs. 

AS. How did you make your decision? 
Killingbeck. With the independent strings, there are 
problems with flight control. Suppose we were ap- 
proaching one of the critical points in the mission: orbit 
insertion or landing. Error tolerances are getting very 
small as these points approach. Suppose we were run- 
ning two separate strings, one that thinks the altitude is 
100.5 miles and one that thinks it's 99.5 miles. That 
difference doesn't seem significant, but if one of the 
commands that's going to the vehicle is commanding a 
pitch-up and the other is commanding a pitch-down, 
the voting actuators are going to have problems. 

The two commands are going to cancel each other, 
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and as engine cutoff time approaches, one string will be 
calling for full pitch-up and the other for full pitch- 
down. The vehicle will just keep going right through 
the middle. The same kind of thing can happen on the 
approach to the touchdown point. If one string thinks 
the vehicle is a few feet high and the other thinks it's a 
few feet low, the same kind of pitch-up, pitch-down 
situation exists; only this time the vehicle is probably 
going to crash. 

Macina.  Another problem with this kind of system is 
that it's not very fault tolerant. If we lose a computer, 
we lose all the sensors and effectors connected to it. 

Kill ingbeck.  There are approaches to the instability 
problem that involve equalization and periodic ex- 
changes of data--some kind of averaging, middle select, 
or whatever, to keep things from getting too far apart. 
The problem is that, for every sensor, an analysis has to 
be made of what values are reasonable and how an 
average should be picked. The extra computation con- 
sumes a lot of manpower and time, and creates a lot of 
accuracy problems. It's very hard to set a tolerance 
level that throws away bad data and doesn't somehow 
throw away some good data that happen to be extreme. 
It wasn't so much that we felt that this scheme couldn't 
be made to work, it's just that we believed there had to 
be a better way. Of course, we recognized the advan- 
tages of this approach in terms of recovery time. If the 

computer fails, one whole string goes out and the rest of 
the system keeps going. 

The next most obvious approach is the master/slave 
approach. The difficulty with this approach arises after 
the master fails. Assuming we could detect the failure 
instantly, how would we get control to another com- 
puter? There's about four-tenths of a second of reaction 
time in certain critical phases from when the master 
fails until the vehicle starts misbehaving and losing 
control. One especially delicate phase is the final flare 
at touchdown when it's necessary to make an ex- 
tremely rapid excursion of the elevator and to touch 
down at the right rate. If there's an elevator hard over 
at that point, the vehicle's either going to pitch way up 
and stall or pitch down and dive. There's no time for 
manually appointing a new master under these condi- 
tions. 

The second critical point is during the ascent phase. 
At about 60 seconds into the flight, there is a region 
where air pressure on the vehicle peaks. If a failing 
master commands all of the actuators to swing over to 
their stops, there would only be four-tenths of a second 
to get the actuators back to the center. If we couldn't 
recover in time, the vehicle would literally be blown 
over and would break up. Again, there would be no 
time to manually appoint a new master. 

We would have to arrange for automatic switchover, 
which would be complex. How do you know a bad 
computer won't jump into the automatic switchover 
code and preempt command of the vehicle by mistake? 

FIGURE 5. The Shuttle on the Pad Prior to Launch 
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You may not believe that this is a reasonable type of 
failure, but there's a lot of concern about this type of 
thing happening. We were positive that we didn't want 
any automatic switchover code. Therefore, a master /  
slave system was out. 

Spotz. What we were left with is our current sys- 
t em-dis t r ibu ted  command. This system gives us real 
flexibility: We can reassign data buses, if we need to, 
through keyboard entries. First we modify the data bus 
assignment tables in memory, and then we dynamically 
reassign those data buses between I / O  operations. The 
next I /O  transaction picks up with all of the good sen- 
sors so there's more recovery possible. We're some- 
what reluctant to use this feature because it causes one 
computer to command two outputs and gives that com- 
puter 50 percent control over the vehicle (instead of the 
usual 25 percent). 

There aren't the divergence problems of the inde- 
pendent strings or the unacceptable recovery time of 
the master/slave approach. When a computer fails, 
there's virtually no perturbation to the control of the 
vehicle. The remaining set does take four to five milli- 
seconds to decide that the other computer is not there 
any more, but that's not a problem. We can also reas- 
sign data (via keyboard entries} to permit continuing 
use of sensors following a GPC or IOP failure. 

AS. Can you explain what happens in a "fail to 
sync'? 
Macina. A fail to sync is essentially a break up of the 
redundant set into two or more parts: The "bad" com- 
puter, which may just be a slow computer, considers 
itself the only good machine. It disables all communica- 
tion with the other three computers but continues 
processing sensor data and issuing outputs on the buses 
it commands. The other three computers stop commu- 
nicating with the bad computer and also continue using 
the sensor and output paths assigned to them. At this 
point there are essentially two computer systems at- 
tempting to fly the vehicle. Since the three-computer 
set is in the majority, the various actuators ignore the 
one machine and respond to the other three. Crew pro- 
cedures don't  allow this condition to persist for more 
than a few moments- - the  failed computer is powered 
off. 

DG. Have there been any unusual fail to syncs? 
Killingbeck. We did have a slow failure during an 
ALT flight, the first time we dropped the shuttle from a 
747. You'd like to think that when a computer quits it 
just quits. In this particular case, though, a computer 
interspersed 12 I /O  errors among some good I /O  before 
it failed. The whole process took about four-tenths of a 
second-- ten flight control cycles. The computer had a 
cracked solder joint that was opening and closing be- 
cause of the high acceleration rate, and good data were 
intermittently interspersed with the noise. 

AS. Because of that it was too slow and missed a 
sync point? 
Killingbeck. Well, no. It was getting to the sync points 
but saying it had I /O  errors. In fact, because it was 
commanding certain sensors and the commands 
weren't  going out, all of the computers were having to 
deal with I /O  errors of various types. We got a couple 
of cycle overruns, and finally, after about four-tenths of 
a second, the bad computer was isolated and removed 
from the set and everything recovered. The crew then 
powered it off and flew to a successful landing. 

We now have a test case called "Free-Flight One," 
which we've used throughout the OFT (Orbital Flight 
Test) development. It uses massive I /O  errors to deter- 
mine whether the remaining computers can recover. 

DG. How quickly would the astronauts have to 
switchover from the PASS to the BFS? 
$potz. In the worst case, there would be a 400-milli- 
second window where, if the whole primary went 
down and had previously commanded hard overs on 
the thrust vector controllers, we would lose the vehicle 
if they couldn't  switchover in time. This would be at 
maximum dynamic pressure, shortly after lift-off. 

The general rule, based on observations from the 
crew trainer, is that, if they can't switchover within 
about 10 seconds, they needn't  bother. There are physi- 
cal reasons for this: One is that the integrating acceler- 
ometer registers overflow in about 10 seconds at three 
gravities. After 10 seconds, they would have lost 1000 
feet per second of velocity. 

As long as the BFS is able to listen to all of the data 
the primary is getting, there's no real constraint unless 
the primary issues a hard over command improperly. If 
the primary stops issuing I /O  commands, the crew has 
about 10 seconds from that point. 

AS. How will they know what to do? 
Macina. There are any number of ways: anomalous 
vehicle dynamics, Xs on their screens, multiple failures 
to syncs, etc. The crew is trained extensively on these 
things. 

AS. How would they engage the backup? 
Spotz. By pushing the red button on their hand con- 
trois. 

DG. Is there any single point of failure in the hard- 
ware system that could affect all five computers? A 
clock, maybe, for synchronizing all of the computers 
for data bus access, or anything of that sort? 
Killingbeck. There's not supposed to be. The system 
does not run synchronously at the hardware level. The 
closest we have to a central clock is the master timing 
unit. It's an atomic clock that we read about once a 
second in order to calibrate the comPuters' oscillators. 
This prevents long-term drift. In between those one- 
second points, the computers are totally on their own 
as far as time reference. We've got a complex strategy 
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for recovery should the master timing unit fail. This 
system is not centrally synchronized. We're only syn- 
chronized at the software level. 

DG. Are we  correct in assuming that both the pri- 
mary system and the backup are written in HAL and 
that they use the same compiler? 
Clemons. Yes. Both use HAL/S, although they might 
be using different versions of the compiler at any given 
time. If you're wondering about a generic compiler er- 
ror in both the PASS and the BFS, we did have failures 
like that way back when we were developing the ALT 
program. We wrote about a half dozen or so discrep- 
ancy reports against the compiler. 

Macina. I don't  remember any that were cata- 
s t roph ic - they  were mostly just nuisance problems. 

Clemons. There hasn't  been much to worry about on 
that account. I think it's because we test the compiler 
indirectly by testing every change in our simulator to 
see that it conforms to the requirements and the design. 
We also try to stay on the same version of the compiler 
all the way through the development, verification, and 
flight cycle. We won't  switch to a new version of the 
compiler in midstream. 

Occasionally, we get nuisance problems in the com- 
piler. Once, we saw some matrix operations that didn't 
work under certain sets of conditions, and we had to go 
back and do a full audit of all uses of that operation in 
the compiler to make sure that there weren't  any other 
exposures. We've never found any other problems. The 
compiler has not been a source of errors. It's also to our 
advantage that the source code in the backup flight 
system is different. It's highly unlikely that there would 
be compiler problems in two sets of separately devel- 
oped code at the same time. 

DG. Could the Shuttle be f lown without  its displays, 
if absolutely necessary? 
Macina. It would be very difficult to fly a complete 
mission but not impossible to land the vehicle. We 
learned this during an ALT simulation (in the FSL} 
when we ran a test to see how our priority-driven oper- 
ating system reacted to high CPU utilization. We put a 
pilot at 20,000 feet and began to artificially steal proc- 
ess.ing resources from the computer so the lower prior- 
ity tasks couldn't  operate. One of these was the display 
process. We ran the CPU up to an effective 120 percent, 
which left only flight control operational. With just this 
task running, the vehicle continued to respond to the 
pilot's commands, although the displays were dead. 
With the array of aircraft instruments, some of which 
were operating at reduced efficiency, the pilot was able 
to take the vehicle from 20,000 feet and land it man- 
ually, although he had a little difficulty and had to rely 
on visual clues. We can presume, then, that even if 
there were a problem that disabled the displays, the 
Shuttle could return if the failure occurred after the 
software for entry had been loaded into the computer 

and if the vehicle was low enough in the entry trajec- 
tory. 

Clemons. One other point: All the data that are driven 
on the displays are also put on the downlist. The 
ground system uses that information to construct simi- 
lar displays, and there are equivalent commands that 
can be issued to their displays and control systems. 
They could issue commands through the uplink in an 
emergency. It's possible to go through all of the ascent 
and on-orbit operations from the ground. The entry 
could be flown automatically, since there is a set of 
displays that are driven totally independently of the 
flight software itself. Once the pilot gets low enough, he 
can fly the Shuttle manually the rest of the way. 

There's another kind of generic failure that hasn't  
been mentioned: a generic flight computer problem. 
After all, the backup flight computer is the same as the 
primary. We haven' t  ever encountered this kind of 
problem, though, in our 10 years of experience with 
these machines. 

We could have put the backup computer 's software 
in a different manufacturer 's  computer so that all five 
machines wouldn' t  be identical, but we decided that 
this reduced our flexibility and that it just wasn't  nec- 
essary. 

SYSTEM PROBLEMS 

DG. I understand there was  a problem with  the as- 
cent trajectory on STS-1. 
Macina. That was a vehicle performance issue: We 
were given a set of initialization loads for shaping the 
ascent profile to minimize loads while still getting the 
vehicle into the correct orbit. These data are based on 
knowledge of the boosters, the main engines, etc. The 
initialization data given to us in this case didn't provide 
adequate capability to perform a return-to-launch-site 
abort. This was determined by an engineering analysis 
of the data after the flight. That has nothing to do with 
a software deficiency. The problem was corrected on 
subsequent flights with a different initial load. 

DG. It must  be difficult to find errors l ike that. 
Macina. The difficulty is that you can't  simulate the 
vehicle perfectly prior to flight. 

AS. We've heard a lot about a synchronizat ion prob- 
lem you had on the first Shuttle flight. Could you 
describe that for us? 
Spotz. The symptom of the STS-1 problem was the 
inability of the BFS to receive cyclic data from the 
PASS GPCs. This isn't strictly related to PASS synchro- 
nization, since the BFS monitors PASS I /O  transactions 
at predetermined times (called BFS listen windows). At 
approximately T - 1 7  minutes in the countdown, the 
BFS was moded to its ascent program and started listen- 
ing to the PASS I /O  transactions. All flight-critical 
sensor data were received properly, but the uplink 
transactions had errors, so the corresponding BFS buses 
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for the transactions were downmoded (marked as not 
being "tracked"). Since the BFS establishes its listen 
windows at the transition into the ascent program, it 
was moded back to its idle state and back again to the 
ascent program in an attempt to clear up the problem. 
The problem persisted. 

Dumps were taken of both the BFS and a PASS GPC, 
and from the PASS and BFS error logs, we quickly 
determined that the PASS was initializing the uplink 
I/O on the wrong cycle relative to other transactions 
monitored by the BFS. (This was determined before the 
launch was scrubbed, even though the information 
didn't get disseminated until later.) Since all "BFS lis- 
ten" transactions are also reestablished in the PASS 
upon memory overlays, the primary system was moded 
back to the prelaunch checkout program and back 
again to the ascent progam. The problem persisted here, 
too. Someone suggested we completely reinitialize the 
PASS, which as it turned out would probably have 
cleared up the problem, but this wasn't considered a 
safe procedure with the vehicle fully fueled. Also, a full 
explanation of the problem, not just its convenient dis- 
appearance, was required for a launch commit. 

As it turned out, the problem had occurred at the 
initialization of the first primary GPC about 30 hours 
earlier, and had no major symptom other than the BFS 
tracking problem for the entire countdown. Actually, 
there was one other subtle symptom that turned out to 
be quite useful in proving that the problem really oc- 
curred over 30 hours prior to when the dumps were 
taken. This symptom was the loss of "pseudo-sync," or 
the expected timing between the GPC downlink data 
and other telemetry data. It wasn't until we suspected a 
process and phasing shift at initialization that we dis- 
covered that this relationship had not even been estab- 
lished for a single downlink cycle. The ground systems 
hadn't noticed the shift either, since this phasing isn't 
critical to their processing. 

After the launch was scrubbed, we started back 
through the dumps. The operating system time queue 
(which is used to initiate cyclic processes) showed that 
not only the uplink process, but every process that was 
initiated by a mechanism known as phase-scheduling, 
was occurring on the wrong 40-millisecond cycle. 
Other processes, primarily the guidance, navigation, 
and flight control processes, used a different scheduling 
algorithm that guaranteed execution on their proper 
cycles, and these processes determined the profile for 
all I/O except the uplink. The two scheduling algo- 
rithms should have been consistent, and in tens of 
thousands of hours of testing, we had never seen an 
inconsistency. Several theories about possible causes 
were proposed, but finally Lynn Killingbeck realized 
that the apparent shift in all phase-scheduled processes 
could actually have been a shift in the initial schedul- 
ing of the system interface process--the process that 
phase-scheduled processes are phased from. The failure 
to establish downlink pseudo sync confirmed that the 
problem had occurred at initialization, and that the sys- 
tem had not somehow " slipped a cog" during count- 

down. This was important since a failure later, during 
redundant set operation, would have implied some sin- 
gle-point failure or a generic software problem. Even 
though the exact mechanism of the initial shift was not 
deduced and proved until Sunday morning, after Co- 
lumbia was in orbit, enough data were available to de- 
termine the nature and probability of the problem, and 
to assure NASA that a safe mission could be flown. 

The specific software problem had its roots in the 
assumption that the system interface process was al- 
ways the first process to be scheduled--the timer 
queue should have been empty, except for the system 
interface, during computer initialization. As we later 
realized, this wasn't always the case. 

The assumption was true when the scheduling algo- 
rithm was first implemented for ALT, but subsequent 
changes to the bus reconfiguration and initialization 
software invalidated it. After ALT, the bus reconfigura- 
tion software was changed to allow more crew control 
of the DPS configuration and to provide intercomputer 
cooperation for the display and launch data buses. 
These changes involved a delay, which required a time 
queue entry. This violated the assumption of an empty 
timer queue when system initialization was scheduled, 
and a potential process phasing anomaly was intro- 
duced. 

Fortunately, this first change didn't expose us to the 
problem, even though it violated the "empty queue" 
assumption. It was a second later change made to ex- 
pand the delay from 50 to 80 milliseconds that created 
the timing that eventually exposed us to the problem. 
After the second change, we had essentially a 1 in 67 
chance of it happening each time we turned on the first 
GPC of the set. We had opened a 15-millisecond win- 
dow within each second when there could be another 
process on the timer queue when the uplink process 
was being phase-scheduled. It was this 1 in 67 probabil- 
ity and the knowledge that the problem only occurred 
during initialization that allowed NASA to turn the 
computers off and then back on, and to fly the mission 
two days later without making a software change to 
correct the problem. 

Macina.  The potential for the problem--the first 
change--was introduced in 1978. The delay was 
changed from 50 to 80 milliseconds in 1979, which 
opened the window. It took us until the first flight, in 
1981, to find it, or rather, for it to find us, We tested all 
through this area, but no one ever got lucky. 

AS. Which of your test systems might have found the 
problem? 
Macina.  The SAIL was the most likely since it has a 
real PCMMU, and, as we determined later, the problem 
only occurred when you were using real PCMMU hard- 
ware. Simulator models don't have enough fidelity to 
produce the right timing. Even the SAIL simulations 
were limited since they're usually initiated from 
"checkpoints." This saves the time involved in having 
to initialize the computers each time and fly to the 
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point in the trajectory where the testing is to be per- 
formed. 

DG. Did you reproduce the problem after the fact? 
Eiland. Yes, the SAIL recreated it. They dedicated a 
full eight hours to just turning computers on and off. 
The system failed on the 75th run. 

THE INTERPROCESS VARIABLE PROBLEM 

AS. What is your perspective on the structure of 
your system now that you've been intimately involved 
with it for a long time? Are there things that you 
would like to do differently? 
Macina. Certain design decisions we made early in 
the program have cost us a lot in maintenance. Things 
are under control now, and we can live with what we 
have. So the answer would have to be "yes," there are 
some things we would like to do differently. 

Clemons. The fundamental design decision that's wor- 
ried us the most and caused literally man-years of anal- 
ysis is in the area of variables accessed by multiple 
processes within the software--so-called interprocess 
variables. Recall that we have a priority-driven execu- 
tive with different priority processes passing thousands 
of parameters back and forth among each other. Re- 
member also that each machine is slightly out of sync 
in the redundant set, although by no more than three 
or four milliseconds. Consider two machines in a re- 
dundant set where two processes are redundantly com- 
puting some variable. On one machine, a process com- 
putes a new value for the variable but is then inter- 
rt~pted for a higher priority process that uses that value. 
Ofi the second machine, the process also gets inter- 
rupted, but before it has computed the new value. The 
t~o higher priority processes in the two computers that 
began to run after the interrupt have different values of 
that variable and may perform different functions. If 
their execution paths are sufficiently different, they 
may fail to synchronize. 

Macina. Remember: To provide identical outputs, 
processes have to receive identical inputs and execute 
instructions in the same order. In this case, the second 
process is not getting identical inputs in both machines, 
and their outputs may begin to diverge. 

Eiland. I don't  think the original design team realized 
how many variables would be shared by separate proc- 
esses. The HAL language actually had a capability to 
protect those variables with what we call an update 
block. In the system's original form, we incorporated 
these update blocks. But, as design and development 
continued, we realized that multiple processes required 
many more variables than could conveniently and eco- 
nomically be passed within update blocks. 

DG. What do these protected blocks do? 
Eiland. Any update block is a lock group. In the im- 
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plementation, the update block notifies the operating 
system that a particular process is using an element of a 
lock group, in order to prevent concurrent access to 
that group by any other process. 

Once we realized we needed a cheaper protection 
mechanism, we implemented what we called a disable 
block to disable interrupts in the lower priority process 
while that process is accessing the interprocess vari- 
ables. This was more efficient but still too expensive. 

Clemons. Early on, our estimates of CPU utilization 
and core size showed there would be no room for up- 
date or disable blocks for every variable. We decided to 
protect only those variables that had to be protected 
and to analyze the remainder. We could provide alibis 
in the code to show why protection wasn't  necessary. 
We have thousands of alibis. 

Macina. But in light of what has happened since, the 
program might have been better off developing a faster 
and larger machine. 

Clemons. Every time we make a design change, now, 
we have to consider these alibis, one at a time. Maybe 
we've changed the way a module works or the fre- 
quency in which it operates. Maybe protection wasn't  
needed before on a variable because a certain module 
never invoked another under a particular circumstance 
but would now. 

We almost never have synchronization problems any 
more, so we should probably leave well enough alone. 
Our protection is good, but we're always trying to an- 
ticipate the effects of the next change. Local changes 
made by applications programmers may have system- 
wide implications, and the programmers may not be 
able to understand these implications. 
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TABLE II. Explanations of Acronyms and Special Terminology 

ALL Approach and landing test programs. These were the 
tests that involved dropping the Orbiter from the 747 carrier 
aircraft from an altitude of 20,000 feet. They constituted the 
first operational use of the PASS system. 
AP-101. There are five System/4 Pi Model AP-101 com- 
puters on board the Shuttle. Four are used by the PASS, and 
one by the BFS. The computer has 106K 32-bit words and 
executes about 450,000 operations per second. 
BFS. Backup flight system. The BFS executes in the fifth 
computer. It can perform critical functions during ascent and 
entry if something catastrophic happens to the PASS. The 
BFS is independently programmed by Rockwell. 
DEU. Display electronics unit. The DEU processes com- 
mands from the on-board computers before they go to the 
video displays. 
Downlink, The downlink is the communication channel from 
the Shuttle to Mission Control. 
Downlist. The downlist is the data sent by the DPS to Mis- 
sion Control via the downlink. 
DPS. Data processing system. This term designates the en- 
tire on-board computer system. 
FEID. Flight equipment interface device. FEIDs are hardware 
components that interface the flight computers to a simu- 
lated environment within the SPF flight simulator. 
GNC. Guidance, navigation, and control. These are a set of 
applications within the DPS. 
GPC. General purpose computer. Any one of the five on- 
board computers. 
HFE. High-frequency executive. This is a high-priority proc- 
ess that runs synchronously in the PASS at 25 Hz and con- 
trols the flight control application programs. 
IMU. Inertial measurement unit. IMUs are navigational aids 
that measure accelerations on the vehicle. 
lOP. Input/output processor. An lOP is one of two boxes that 
make up an on-board computer. It is used to interconnect 
with various buses. 
IVV. Independent verification and validation. The IVV group 
for the Shuttle projects was completely separate from the 
development group, so that testing would be as objective 
and as thorough as possible. 

LDB. Launch data bus. The LDB connects the data process- 
ing system to the LPS. 

LPS. Launch processing system. The LPS is the computer 
system at the Kennedy Space Center in Cape Canaveral. 
MDM. Multiplexor/demultiplexor. The MDMs interface the 
GPCs to the Shuttle's sensors and actuators. 

MVS. MVS is an IBM standard operating system used on 
large IBM mainframes. 

OFT. Orbital flight test. This term designates any of the first 
four scheduled developmental space flights of the Space 
Shuttle. 

On-orbit. The orbital phase of a Shuttle mission; the part 
between ascent and entry. 

PASS. Primary avionics software system. The PASS is the 
software that runs in up to four of the five GPCs. 

PCMMU. Pulse code modulation master unit. The PCMMU is 
an on-board hardware component that collects information to 
be transferred from the DPS to Mission Control. 

Redundant Set. The four computers used by the PASS to 
achieve reliability during flight-critical phases of a mission are 
the redundant set. The computers are synchronized at the 
applications level and provide bit-for-bit identical output. 

SAIL. Shuttle avionics and integration laboratory. The SAIL is 
a facility for integrating the Shuttle's hardware and software. 

SDL. Software development laboratory. The SDL was the 
forerunner of the SPF. 

SM. Systems management. SM is the software that does 
vehicle and payload monitoring and control while the vehicle 
is in orbit. 

SMS. Shuttle mission simulator. The SMS is the simulator, 
located at the Johnson Space Center in Houston, that the 
Shuttle crews train on. 

SPF. Software production facility. The SPF is the primary 
facility for developing, integrating, and testing software for 
the PASS and BFS. It comprises IBM mainframes, special 
interfaces devices, and actual AP-101 flight computers. 

STS. Space transportation system. This is the formal name 
for the Space Shuttle. The first Shuttle flight was designated 
STS-1, and each succeeding flight has been numbered se- 
quentially. 

Uplink. The uplink is the communication channel from Mis- 
sion Control to the Shuttle. 

Eiland. Analyzing interprocess variables requires a 
good working knowledge of the entire system. As more 
and more of our most knowledgeable people move on 
to other things, it will get harder and harder to keep 
track of the implications of various kinds of changes. 

DG. Do you have any tools that work on source code 
that help you ascertain w h e n  your assertions are cor- 
rect? 
Eiland. We have a static analyzer tool that we run for 
every software release. It identifies all of the interproc- 
ess variables, the processes that reference them, and 
whether or not they are explicitly protected. If it is 
determined that a variable is exposed, then it's neces- 
sary to identify why the design of the system protects 
the variable. 

This tool determines the priority of all the processes 
and takes account of certain assertions. There may be 
two processes that can never run at the same time, for 
instance. With the disable blocks in the code, the tool 
can determine which variables are protected. This still 
leaves a set of variables that are not explicitly pro- 
tected. We have to analyze those and put in manual  
cards indicating that these references are protected. If 
we change that software and invalidate an alibi, we get 
an exposed situation. The reanalysis that we have to do 
after every change becomes very costly. 

Kill ingbeck.  Some of the most difficult changes are to 
pointer variables, which HAL calls name variables. If 
there's a pointer that's indexing through a whole array 
of variables, our tool is going to lose track of those 
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names. It can see the primary name at the beginning of 
the chain, but it can't keep track of anything beyond 
that point. 

AS. Do you have any idea of the actual cost involved 
in trying to perform this extra validation every time 
through? 
Eiland. It was in terms of many man-years for the first 
five flights. The tool was absolutely necessary for iden- 
tifying these variables and in many cases pointed out 
problems that required explicit protection. It was abso- 
lutely the only way to manage all the variables that we 
have. 

Spotz. There was one instance where a major design 
change caused a problem that we didn't detect, which 
caused a fail to sync about 13 hours before the launch 
of the STS-5. Overnight, we were able to determine the 
circumstances that led up to this. The problem could 
only have occurred during reconfigurations, so it wasn't 
an ascent or an entry issue. We were able to determine 
that this problem was not going to affect the upcoming 
flight. 

AS. Where are the alibis physically stored? 
Eiland. We have a separate database for alibis. 

DG. Another alternative to the overall system design 
would have been processes that could send messages 
to each other to communicate information. Would you 
consider this kind of approach as an alternative to 
shared variables, if you were going to redo the sys- 
tem? 
Spotz. We would make every effort to minimize the 
number of shared variables. When the system was de- 
signed in the early 1970s, we expected only about 
50-100 interprocess variables. This estimate was based 
on the guidance, navigation, and control systems. Navi- 
gation computes seven things for a s tate-- three posi- 
tions, three velocities, and one t ime--and  passes them 
on to guidance, which converts them to the pitch, roll, 
and yaw information. Those three things go on to flight 
control. Today there are thousands of interprocess vari- 
ables. The problem is with the interactive crew inter- 
face code, not flight control. There's an awful lot of on- 
demand asynchronous processing involved there. 

CONCLUDING REMARKS 

AS. What could the computer science research and 
development communities do to make efforts like this 
simpler in the future? 
Macina. The most important area is software engi- 
neering. We need more structured ways of designing 
software and coding, and more automated methods for 

validating the correctness of software early in the life 
cycle. Ultimately, there should be less of a need for 
testing, which is a costly way of assuring software relia- 
bility. We're reasonably satisfied with the languages we 
have today; it's the rigor with which we apply them 
that's the issue. 

AS. What kinds of on-board systems do you see in 
more advanced Space Shuttles and Space Stations? 
Macina. I think the major goal for the designers of the 
Space Station will be more extensive distribution of 
both hardware and software functions. The Shuttle's 
DPS isn't really a distributed system-- there  are five 
centralized computers each performing all of the on- 
board functions. Although we were able to develop a 
reliable system, the centralization of hardware and soft- 
ware reduced the system's adaptability. The Space Sta- 
tion designers will be working toward a data processing 
system that is not only reliable, but that can be up- 
graded with only a local effect on hardware and soft- 
ware. 
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