, 103 min read

Rubin's 4-th Order Method is Neither A-stable Nor D-stable

Beware, this three-dimensional graphic needs some time to load. You can rotate the graphic around any axis.

This is in continuation of:

  1. Stability Regions for BDF and Tendler's Formulas
  2. Stability Regions for Tischer's Formulas

We analyze below method from Rubin, see his Fig. 4.2.

$$ \begin{array}{r|rr} p=4 && 1 & 2\cr%R4A \hline -1 && 0 & 56\cr 0 && 24 & -72\cr 1 && -24 & 0\cr 2 && 0 & 16\cr \hline -1 && 1 & -21\cr 0 && -13 & -39\cr 1 && -13 & 33\cr 2 && 1 & 3\cr \hline c_{5i} && 0.0153 & 0.08125\cr \end{array} $$

The error constant is

$$ c_{p+1} = \frac{1}{\alpha_{i}\,(p+1)!} \sum_{i=0}^k\bigl(\alpha_ii^{p+1}-(p+1)\beta_ii^p\bigr). $$

The stability polynomial has roots at 1 and 3.5, and therefore is not D-stable.

Rubin1, p=4, k=2, l=2
            0.0000        56.0000
           24.0000       -72.0000
          -24.0000         0.0000
            0.0000        16.0000
            1.0000       -21.0000
          -13.0000       -39.0000
          -13.0000        33.0000
            1.0000         3.0000
rho_0       0.000000000           0.000000000
rho_1      -0.000000000            0.000000000
rho_2      -0.000000000            0.000000000
rho_3      -0.000000000            0.000000000
rho_4      -0.000000000            0.000000000
rho_5       0.015277778            0.081250000  <-----

1. Stability region.

Below is the output of:

stabregion2 -f Rubin1 -oj -r600

Just looking at this stability region one could assume that the method is A-stable.

Truth is, it is not.

2. Stability mountain.

Below is the output of:

stabregion2 -f Rubin1 -o3 -r600 -L29

Rubin1 stability mountain.