, 6 min read
Projektionsmatrix eines Raumes
1. Projektor
Sei eine lineare Mannigfaltigkeit ${\cal M}\subseteq\mathbb{C}^n$ aufgespannt durch die $s$ linear unabhängigen Vektoren $a_1,\ldots,a_s\in\mathbb{C}^n$. Sei $A=(a_1,\ldots,a_s)\in\mathbb{C}^{n\times s}$. Es gilt
Sei ${\cal M}^\bot$ das orthogonale Komplement von ${\cal M}$, also $y\in{\cal M}^\bot$ genau dann, wenn
Ist die Orthogonalitätsrelation (bzw. die dazugehörige Sesquilinearform) nicht ausgeartet, so gilt
also ${\cal M}\oplus{\cal M}^\bot=\mathbb{C}^n$. Jeder Vektor $0\ne x\in\mathbb{C}^n$ lässt sich somit eindeutig zerlegen in einen Anteil aus ${\cal M}$ und einen Anteil aus ${\cal M}^\bot$, also
Bezeichnung: $\xM$ heißt die Projektion von $x$ auf ${\cal M}$ und $\xMb$ heißt orthogonale Projektion von $x$ auf ${\cal M}$.
1. Satz: Bei fest gegebener Basis $a_1,\ldots,a_s$ von ${\cal M}$ lassen sich $\xM$ und $\xMb$ berechnen durch
Da $A\in\mathbb{C}^{n\times s}$ maximalen Spaltenrang hat, ist $A^*A$ nach der Gramschen Determinante invertierbar.
Bezeichnung: $P$ heißt Projektionsmatrix oder Projektor, $Q$ heißt orthogonaler Pojektor; genauer ist von $P_s$ bzw. $Q_s$ zu sprechen.
Beweis: Sei
Es ist $\xM=Au$, mit $u\in\mathbb{C}^s$. Durch Linksmultiplikation mit $(A^*A)^{-1}A^*$ folgt $u=(A^*A)^{-1}A\xM$. Ein Element von ${\cal M}$ muß bzgl. der Basis $a_1,\ldots,a_s$ die Koordinaten $(u_1,\ldots,u_s,0,\ldots,0)$ haben, somit
Für $x\in\cal M$ gilt $x=Au$ und $Px=Au=x$. Für $x\in{\cal M}^\bot$ gilt $A^*x=0,$ wegen $a_i^*x=0$ ($i=1,\ldots,s$). Die Darstellung von $Q$ folgt sofort aus der Darstellung von $P$, wegen $\xMb = x - \xM = x - Px$. ☐
2. Beispiel: Seien $n=3$, $s=2$, $a_1=(1,0,0)^\top$, $a_2=(0,1,0)^\top$. Damit wird $P=A(A^\top A)^{-1}A^\top=\mathop{\rm diag}(1,1,0)$, wegen $A^\top A={1{\mskip 3mu}0\choose 0{\mskip 3mu}1}$. Dies ist tatsächlich die Projektion auf die ersten beiden Komponenten.
3. Satz: Bezeichne $\mathopen|x\mathclose|=\sqrt{\langle x,x\rangle}$. Es gelten
(1) $P^*=P$, $Q^*=Q$ (Hermitizität),
(2) $P^2=P$, $Q^2=Q$ (Idempotenz),
(3) $x,a_1,\ldots,a_s$ linear anhängig $\iff$ $Qx=0$,
(4) $P$, $Q$ positiv semidefinit,
(5) $\mathopen|Px\mathclose|\le\mathopen|x\mathclose|$, $\mathopen|Px\mathclose|\le\mathopen|x\mathclose|$,
(6) $P_iP_k = P_{\min(i,k)}$, $Q_iQ_k = Q_{\max(i,k)}$,
(7)
Beweis: zu (1) und (2): elementare Rechnung.
zu (3): $Qx=0$ $\iff$ $x\in{\cal M}$ $\iff$ $x,a_1,\ldots,a_s$ im gleichen $s$-dimensionelen Raum.
zu (4): $P$, $Q$ hermitesch mit Eigenwerten 0 und 1.
zu (5): Da $P$ und $Q$ hermitesch sind, kann man beide unitär diagonalisieren, mit unitärer Matrix $U$ ($U^*U=I$, $\mathopen|U\mathclose|=1$). Also $\mathopen|Px\mathclose|\le\mathopen|U\mathclose| \mathopen|D\mathclose| \mathopen|U^*\mathclose| \mathopen|x\mathclose|$, wobei $\mathopen|D\mathclose|=1$.
zu (6) und (7): klar. ☐
4. Beispiel: Projektionen müssen nicht immer hermitesch, noch niemals normal sein. Projektionen können auch die euklidische Norm eines Vektors vergrößern. Dies zeigt $R={1{\mskip 3mu}1\choose 0{\mskip 3mu}0}$: $R^2=R$ (Projektoreigenschaft), $R\ne R^\top$, $R^\top R\ne RR^\top$ und $R{1\choose1}={2\choose0}$, aber $\mathopen|(2,0)\mathclose|=2$, $\mathopen|(1,1)\mathclose|=\sqrt2$. Der obige Satz sagt, daß mit dem Projektor $A(A^*A)^{-1}A^*$, dies alles nicht passieren kann.
2. Basiswechsel
1. Jeder Vektor $x\in\mathbb{C}^n$ besitzt bzgl. der Basis $a_1,\ldots,a_n$ eine Darstellung der Form $x=\sum{1\le i\le n} a_i\hat x_i = A\hat x$, oder $\hat x=A^{-1}x$, wobei $A=(a_1,\ldots,a_n)\in\mathbb{C}^{n\times n}$. Jeder Vektor $y\in\mathbb{C}^n$ hat also bzgl. $a_1,\ldots,a_n$ die Basisdarstellung $\hat y=A^{-1}y$. Sei $B=(b_1,\ldots,b_m)\in\mathbb{C}^{m\times m}$ eine Basismatrix für den $\mathbb{C}^m$ und sei $L\colon\mathbb{C}^n\mapsto\mathbb{C}^m$ eine Matrix bzgl. der Standardbasis. Der Übergang von der Standardbasis im $\mathbb{C}^n$ auf $A$ und der simultane Übergang von der Standardbasis im $\mathbb{C}^m$ auf $B$ “bewirkt”, daß man $L$ ersetzt durch $\hat L=B^{-1}LA$. Ein Vektor $\hat y=A^{-1}y$ wird also durch die zuerst wirkende Matrix $A$ umgeformt in Standardkoordinaten, danach wirkt wie üblich $L$, und $B^{-1}$ führt zur gewünschten Koordinatendarstellung im Zielraum $\mathbb{C}^m$.
2. Beispiel: Im Falle $B=A$ hat man $\hat L=A^{-1}LA$, bzw. im Falle $B=I$ einfach nur $\hat L=LA$. Wäre lediglich $A=I$ so $\hat L=B^{-1}L$.
Umgekehrt kann die Ersetzung der Matrix $L$ durch $A^{-1}LA$ gedeutet werden, als ein Übergang von der Standardbasis auf die Basis $A$, z.B. $L\to XJY=XJX^{-1}$, bzw. $J\to X^{-1}LX$. D.h., beim Übergang von der Standardbasis auf eine Jordanbasis (gegeben durch die Rechtshauptvektoren $X$), hat dann die Matrix $L$ die bekannte Jordansche Normalform.
Eine Anwendung der Jordanschen Normalform, bzw. der Schurschen Normalform, ist der Äquivalenzsatz für äquivalente Matrizen.
3. Definition: (1) Zwei Matrizen $A,B\in\mathbb{C}^{m\times n}$, heißen äquivalent, wenn $A=RBS$, mit invertierbarer $(m\times m)$-Matrix $R$ und invertierbarer $(n\times n)$-Matrix $S$.
(2) Zwei Matrizen $A,B\in\mathbb{C}^{n\times n}$ heißen ähnlich, falls $A=SBS^{-1}$, mit invertierbarer Matrix $S$.
Ähnlichkeit zweier Matrizen heißt nichts anderes, als Übergang zu einer anderen Basis. Der nächste Satz sagt, daß Äquivalenz zweier Matrizen nur eine Ranginvariante ist, sonst nichts.
4. Satz: (1) Zu jeder Matrix $A\in\mathbb{C}^{m\times n}$ existieren invertierbare Matrizen $R\in\mathbb{C}^{m\times m}$ und $S\in\mathbb{C}^{n\times n}$, sodaß
wobei die Anzahl der Einsen gleich $\mathop{\rm rank} A$ ist.
(2) Zwei Matrizen $A,B\in\mathbb{C}^{m\times n}$ sind genau dann äquivalent, wenn sie den gleichen Rang haben.
Beweis: Entweder über das Gaußsche Eliminationsverfahren mit Zeilen- und Spaltenvertauschungen oder über Jordansche oder Schursche Normalform. (2) folgt sofort aus (1). ☐
Eine weitere Anwendung hiervon ist
5. Satz: $A\in\mathbb{C}^{m\times n}$ hat den genauen Rang $r$ ($0\le r\le\min(m,n)$) $\iff$ es gibt mindestens einen nicht verschwindenden Minor der Ordnung $r$, sämtliche Minoren der Ordnung $r+1,r+2,\ldots,\min(m,n)$ verschwinden.
Beweis: Folgt sofort aus
☐
3. Kronecker-Produkt
1. Definition: Sei $A\in\mathbb{C}^{m\times m}$ und $B\in\mathbb{C}^{n\times n}$. Dann heißt
also
das Kronecker-Produkt oder direktes Produkt von $A$ und $B$.